MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  univ Unicode version

Theorem univ 4456
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ  |-  U. _V  =  _V

Proof of Theorem univ
StepHypRef Expression
1 pwv 3726 . . 3  |-  ~P _V  =  _V
21unieqi 3737 . 2  |-  U. ~P _V  =  U. _V
3 unipw 4118 . 2  |-  U. ~P _V  =  _V
42, 3eqtr3i 2275 1  |-  U. _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1619   _Vcvv 2727   ~Pcpw 3530   U.cuni 3727
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-rex 2514  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-pw 3532  df-sn 3550  df-pr 3551  df-uni 3728
  Copyright terms: Public domain W3C validator