Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprg Unicode version

Theorem uniprg 3742
 Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.)
Assertion
Ref Expression
uniprg

Proof of Theorem uniprg
StepHypRef Expression
1 preq1 3610 . . . 4
21unieqd 3738 . . 3
3 uneq1 3232 . . 3
42, 3eqeq12d 2267 . 2
5 preq2 3611 . . . 4
65unieqd 3738 . . 3
7 uneq2 3233 . . 3
86, 7eqeq12d 2267 . 2
9 vex 2730 . . 3
10 vex 2730 . . 3
119, 10unipr 3741 . 2
124, 8, 11vtocl2g 2785 1
 Colors of variables: wff set class Syntax hints:   wi 6   wa 360   wceq 1619   wcel 1621   cun 3076  cpr 3545  cuni 3727 This theorem is referenced by:  wunun  8212  tskun  8288  gruun  8308  mrcun  13396  unopn  16481  indistopon  16570  uncon  16987  limcun  19077  sshjval3  21763  indispcon  22936  kelac2  26329 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-v 2729  df-un 3083  df-sn 3550  df-pr 3551  df-uni 3728
 Copyright terms: Public domain W3C validator