Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqri Unicode version

Theorem uneqri 3227
 Description: Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
uneqri.1
Assertion
Ref Expression
uneqri
Distinct variable groups:   ,   ,   ,

Proof of Theorem uneqri
StepHypRef Expression
1 elun 3226 . . 3
2 uneqri.1 . . 3
31, 2bitri 242 . 2
43eqriv 2250 1
 Colors of variables: wff set class Syntax hints:   wb 178   wo 359   wceq 1619   wcel 1621   cun 3076 This theorem is referenced by:  unidm  3228  uncom  3229  unass  3242  dfun2  3311  undi  3323  unab  3342  un0  3386  inundif  3438 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083
 Copyright terms: Public domain W3C validator