MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Unicode version

Theorem undom 6835
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
undom  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) )

Proof of Theorem undom
StepHypRef Expression
1 reldom 6755 . . . . . . 7  |-  Rel  ~<_
21brrelex2i 4637 . . . . . 6  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 6762 . . . . . 6  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 17 . . . . 5  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 234 . . . 4  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
61brrelexi 4636 . . . . . . 7  |-  ( C  ~<_  D  ->  C  e.  _V )
7 difss 3220 . . . . . . 7  |-  ( C 
\  A )  C_  C
8 ssdomg 6793 . . . . . . 7  |-  ( C  e.  _V  ->  (
( C  \  A
)  C_  C  ->  ( C  \  A )  ~<_  C ) )
96, 7, 8ee10 1372 . . . . . 6  |-  ( C  ~<_  D  ->  ( C  \  A )  ~<_  C )
10 domtr 6799 . . . . . 6  |-  ( ( ( C  \  A
)  ~<_  C  /\  C  ~<_  D )  ->  ( C  \  A )  ~<_  D )
119, 10mpancom 653 . . . . 5  |-  ( C  ~<_  D  ->  ( C  \  A )  ~<_  D )
121brrelex2i 4637 . . . . . . 7  |-  ( ( C  \  A )  ~<_  D  ->  D  e.  _V )
13 domeng 6762 . . . . . . 7  |-  ( D  e.  _V  ->  (
( C  \  A
)  ~<_  D  <->  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
1412, 13syl 17 . . . . . 6  |-  ( ( C  \  A )  ~<_  D  ->  ( ( C  \  A )  ~<_  D  <->  E. y ( ( C 
\  A )  ~~  y  /\  y  C_  D
) ) )
1514ibi 234 . . . . 5  |-  ( ( C  \  A )  ~<_  D  ->  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) )
1611, 15syl 17 . . . 4  |-  ( C  ~<_  D  ->  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) )
175, 16anim12i 551 . . 3  |-  ( ( A  ~<_  B  /\  C  ~<_  D )  ->  ( E. x ( A  ~~  x  /\  x  C_  B
)  /\  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
1817adantr 453 . 2  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( E. x ( A  ~~  x  /\  x  C_  B
)  /\  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
19 eeanv 2055 . . 3  |-  ( E. x E. y ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  <->  ( E. x ( A  ~~  x  /\  x  C_  B
)  /\  E. y
( ( C  \  A )  ~~  y  /\  y  C_  D ) ) )
20 simprll 741 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  A  ~~  x )
21 simprrl 743 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( C  \  A
)  ~~  y )
22 disjdif 3432 . . . . . . . 8  |-  ( A  i^i  ( C  \  A ) )  =  (/)
2322a1i 12 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( A  i^i  ( C  \  A ) )  =  (/) )
24 ss2in 3303 . . . . . . . . . 10  |-  ( ( x  C_  B  /\  y  C_  D )  -> 
( x  i^i  y
)  C_  ( B  i^i  D ) )
2524ad2ant2l 729 . . . . . . . . 9  |-  ( ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  (
x  i^i  y )  C_  ( B  i^i  D
) )
2625adantl 454 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  i^i  y
)  C_  ( B  i^i  D ) )
27 simplr 734 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( B  i^i  D
)  =  (/) )
28 sseq0 3393 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  C_  ( B  i^i  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( x  i^i  y )  =  (/) )
2926, 27, 28syl2anc 645 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  i^i  y
)  =  (/) )
30 undif2 3436 . . . . . . . 8  |-  ( A  u.  ( C  \  A ) )  =  ( A  u.  C
)
31 unen 6828 . . . . . . . 8  |-  ( ( ( A  ~~  x  /\  ( C  \  A
)  ~~  y )  /\  ( ( A  i^i  ( C  \  A ) )  =  (/)  /\  (
x  i^i  y )  =  (/) ) )  -> 
( A  u.  ( C  \  A ) ) 
~~  ( x  u.  y ) )
3230, 31syl5eqbrr 3954 . . . . . . 7  |-  ( ( ( A  ~~  x  /\  ( C  \  A
)  ~~  y )  /\  ( ( A  i^i  ( C  \  A ) )  =  (/)  /\  (
x  i^i  y )  =  (/) ) )  -> 
( A  u.  C
)  ~~  ( x  u.  y ) )
3320, 21, 23, 29, 32syl22anc 1188 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( A  u.  C
)  ~~  ( x  u.  y ) )
342ad3antrrr 713 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  B  e.  _V )
35 simpllr 738 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  C  ~<_  D )
361brrelex2i 4637 . . . . . . . . 9  |-  ( C  ~<_  D  ->  D  e.  _V )
3735, 36syl 17 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  ->  D  e.  _V )
38 unexg 4412 . . . . . . . 8  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B  u.  D
)  e.  _V )
3934, 37, 38syl2anc 645 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( B  u.  D
)  e.  _V )
40 unss12 3257 . . . . . . . . 9  |-  ( ( x  C_  B  /\  y  C_  D )  -> 
( x  u.  y
)  C_  ( B  u.  D ) )
4140ad2ant2l 729 . . . . . . . 8  |-  ( ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  (
x  u.  y ) 
C_  ( B  u.  D ) )
4241adantl 454 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  u.  y
)  C_  ( B  u.  D ) )
43 ssdomg 6793 . . . . . . 7  |-  ( ( B  u.  D )  e.  _V  ->  (
( x  u.  y
)  C_  ( B  u.  D )  ->  (
x  u.  y )  ~<_  ( B  u.  D
) ) )
4439, 42, 43sylc 58 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( x  u.  y
)  ~<_  ( B  u.  D ) )
45 endomtr 6804 . . . . . 6  |-  ( ( ( A  u.  C
)  ~~  ( x  u.  y )  /\  (
x  u.  y )  ~<_  ( B  u.  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) )
4633, 44, 45syl2anc 645 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  /\  ( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) ) )  -> 
( A  u.  C
)  ~<_  ( B  u.  D ) )
4746ex 425 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  (
( ( A  ~~  x  /\  x  C_  B
)  /\  ( ( C  \  A )  ~~  y  /\  y  C_  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) ) )
4847exlimdvv 2026 . . 3  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( E. x E. y ( ( A  ~~  x  /\  x  C_  B )  /\  ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) ) )
4919, 48syl5bir 211 . 2  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  (
( E. x ( A  ~~  x  /\  x  C_  B )  /\  E. y ( ( C 
\  A )  ~~  y  /\  y  C_  D
) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) ) )
5018, 49mpd 16 1  |-  ( ( ( A  ~<_  B  /\  C  ~<_  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~<_  ( B  u.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   _Vcvv 2727    \ cdif 3075    u. cun 3076    i^i cin 3077    C_ wss 3078   (/)c0 3362   class class class wbr 3920    ~~ cen 6746    ~<_ cdom 6747
This theorem is referenced by:  domunsncan  6847  domunsn  6896  sucdom2  6942  unxpdom2  6956  sucxpdom  6957  fodomfi  7020  uncdadom  7681  cdadom1  7696
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-en 6750  df-dom 6751
  Copyright terms: Public domain W3C validator