MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Unicode version

Theorem tz7.49c 6344
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.49c  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem tz7.49c
StepHypRef Expression
1 tz7.49c.1 . . 3  |-  F  Fn  On
2 biid 229 . . 3  |-  ( A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) )  <->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
31, 2tz7.49 6343 . 2  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
4 3simpc 959 . . . 4  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
5 onss 4473 . . . . . . . . 9  |-  ( x  e.  On  ->  x  C_  On )
6 fnssres 5214 . . . . . . . . 9  |-  ( ( F  Fn  On  /\  x  C_  On )  -> 
( F  |`  x
)  Fn  x )
71, 5, 6sylancr 647 . . . . . . . 8  |-  ( x  e.  On  ->  ( F  |`  x )  Fn  x )
8 df-ima 4601 . . . . . . . . . 10  |-  ( F
" x )  =  ran  (  F  |`  x )
98eqeq1i 2260 . . . . . . . . 9  |-  ( ( F " x )  =  A  <->  ran  (  F  |`  x )  =  A )
109biimpi 188 . . . . . . . 8  |-  ( ( F " x )  =  A  ->  ran  (  F  |`  x )  =  A )
117, 10anim12i 551 . . . . . . 7  |-  ( ( x  e.  On  /\  ( F " x )  =  A )  -> 
( ( F  |`  x )  Fn  x  /\  ran  (  F  |`  x )  =  A ) )
1211anim1i 554 . . . . . 6  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( (
( F  |`  x
)  Fn  x  /\  ran  (  F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
13 dff1o2 5334 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( F  |`  x )  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  (  F  |`  x )  =  A ) )
14 3anan32 951 . . . . . . 7  |-  ( ( ( F  |`  x
)  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  (  F  |`  x )  =  A )  <->  ( (
( F  |`  x
)  Fn  x  /\  ran  (  F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
1513, 14bitri 242 . . . . . 6  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( ( F  |`  x )  Fn  x  /\  ran  (  F  |`  x )  =  A )  /\  Fun  `' ( F  |`  x
) ) )
1612, 15sylibr 205 . . . . 5  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A )
1716expl 604 . . . 4  |-  ( x  e.  On  ->  (
( ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
184, 17syl5 30 . . 3  |-  ( x  e.  On  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
1918reximia 2610 . 2  |-  ( E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
203, 19syl 17 1  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    \ cdif 3075    C_ wss 3078   (/)c0 3362   Oncon0 4285   `'ccnv 4579   ran crn 4581    |` cres 4582   "cima 4583   Fun wfun 4586    Fn wfn 4587   -1-1-onto->wf1o 4591   ` cfv 4592
This theorem is referenced by:  dfac8alem  7540  dnnumch1  26307
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608
  Copyright terms: Public domain W3C validator