MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Unicode version

Theorem tgpsubcn 17605
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1 (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2  |-  J  =  ( TopOpen `  G )
tgpsubcn.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
tgpsubcn  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )

Proof of Theorem tgpsubcn
StepHypRef Expression
1 eqid 2253 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2253 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2253 . . 3  |-  ( inv g `  G )  =  ( inv g `  G )
4 tgpsubcn.3 . . 3  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubfval 14359 . 2  |-  .-  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) ( ( inv g `  G ) `
 y ) ) )
6 tgpsubcn.2 . . 3  |-  J  =  ( TopOpen `  G )
7 tgptmd 17594 . . 3  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
86, 1tgptopon 17597 . . 3  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
98, 8cnmpt1st 17194 . . 3  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  x )  e.  ( ( J  tX  J )  Cn  J
) )
108, 8cnmpt2nd 17195 . . . 4  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  y )  e.  ( ( J  tX  J )  Cn  J
) )
116, 3tgpinv 17600 . . . 4  |-  ( G  e.  TopGrp  ->  ( inv g `  G )  e.  ( J  Cn  J ) )
128, 8, 10, 11cnmpt21f 17198 . . 3  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( ( inv g `  G ) `
 y ) )  e.  ( ( J 
tX  J )  Cn  J ) )
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 17603 . 2  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) ( ( inv g `  G ) `  y
) ) )  e.  ( ( J  tX  J )  Cn  J
) )
145, 13syl5eqel 2337 1  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   ` cfv 4592  (class class class)co 5710    e. cmpt2 5712   Basecbs 13022   +g cplusg 13082   TopOpenctopn 13200   inv gcminusg 14198   -gcsg 14200    Cn ccn 16786    tX ctx 17087   TopGrpctgp 17586
This theorem is referenced by:  istgp2  17606  clssubg  17623  clsnsg  17624  tgphaus  17631  tgpt0  17633  divstgplem  17635
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-map 6660  df-topgen 13218  df-plusf 14203  df-sbg 14326  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cn 16789  df-tx 17089  df-tmd 17587  df-tgp 17588
  Copyright terms: Public domain W3C validator