Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Unicode version

Theorem tfinds 4541
 Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction hypothesis for successors, and the induction hypothesis for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1
tfinds.2
tfinds.3
tfinds.4
tfinds.5
tfinds.6
tfinds.7
Assertion
Ref Expression
tfinds
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   (,)   ()   (,)   ()   ()

Proof of Theorem tfinds
StepHypRef Expression
1 tfinds.2 . 2
2 tfinds.4 . 2
3 dflim3 4529 . . . . 5
43notbii 289 . . . 4
5 iman 415 . . . . 5
6 eloni 4295 . . . . . . 7
7 pm2.27 37 . . . . . . 7
86, 7syl 17 . . . . . 6
9 tfinds.5 . . . . . . . . 9
10 tfinds.1 . . . . . . . . 9
119, 10mpbiri 226 . . . . . . . 8
1211a1d 24 . . . . . . 7
13 nfra1 2555 . . . . . . . . 9
14 nfv 1629 . . . . . . . . 9
1513, 14nfim 1735 . . . . . . . 8
16 vex 2730 . . . . . . . . . . . . 13
1716sucid 4364 . . . . . . . . . . . 12
181rcla4v 2817 . . . . . . . . . . . 12
1917, 18ax-mp 10 . . . . . . . . . . 11
20 tfinds.6 . . . . . . . . . . 11
2119, 20syl5 30 . . . . . . . . . 10
22 raleq 2689 . . . . . . . . . . . 12
23 nfv 1629 . . . . . . . . . . . . . . 15
2423, 1sbie 1910 . . . . . . . . . . . . . 14
25 sbequ 1952 . . . . . . . . . . . . . 14
2624, 25syl5bbr 252 . . . . . . . . . . . . 13
2726cbvralv 2708 . . . . . . . . . . . 12
28 cbvralsv 2714 . . . . . . . . . . . 12
2922, 27, 283bitr4g 281 . . . . . . . . . . 11
3029imbi1d 310 . . . . . . . . . 10
3121, 30syl5ibrcom 215 . . . . . . . . 9
32 tfinds.3 . . . . . . . . . . 11
3332biimprd 216 . . . . . . . . . 10
3433a1i 12 . . . . . . . . 9
3531, 34syldd 63 . . . . . . . 8
3615, 35rexlimi 2622 . . . . . . 7
3712, 36jaoi 370 . . . . . 6
388, 37syl6 31 . . . . 5
395, 38syl5bir 211 . . . 4
404, 39syl5bi 210 . . 3
41 tfinds.7 . . 3
4240, 41pm2.61d2 154 . 2
431, 2, 42tfis3 4539 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wb 178   wo 359   wa 360   wceq 1619   wcel 1621  wsb 1882  wral 2509  wrex 2510  c0 3362   word 4284  con0 4285   wlim 4286   csuc 4287 This theorem is referenced by:  tfindsg  4542  tfindes  4544  tfinds3  4546  oa0r  6423  om0r  6424  om1r  6427  oe1m  6429  oeoalem  6480  r1sdom  7330  r1tr  7332  alephon  7580  alephcard  7581  alephordi  7585  rdgprc  23319  tartarmap  25054 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291
 Copyright terms: Public domain W3C validator