Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Unicode version

Theorem tailfval 25487
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1  |-  X  =  dom  D
Assertion
Ref Expression
tailfval  |-  ( D  e.  DirRel  ->  ( tail `  D
)  =  ( x  e.  X  |->  ( D
" { x }
) ) )
Distinct variable groups:    x, D    x, X

Proof of Theorem tailfval
StepHypRef Expression
1 uniexg 4408 . . . 4  |-  ( D  e.  DirRel  ->  U. D  e.  _V )
2 uniexg 4408 . . . 4  |-  ( U. D  e.  _V  ->  U.
U. D  e.  _V )
3 mptexg 5597 . . . 4  |-  ( U. U. D  e.  _V  ->  ( x  e.  U. U. D  |->  ( D " { x } ) )  e.  _V )
41, 2, 33syl 20 . . 3  |-  ( D  e.  DirRel  ->  ( x  e. 
U. U. D  |->  ( D
" { x }
) )  e.  _V )
5 unieq 3736 . . . . . 6  |-  ( d  =  D  ->  U. d  =  U. D )
65unieqd 3738 . . . . 5  |-  ( d  =  D  ->  U. U. d  =  U. U. D
)
7 imaeq1 4914 . . . . 5  |-  ( d  =  D  ->  (
d " { x } )  =  ( D " { x } ) )
86, 7mpteq12dv 3995 . . . 4  |-  ( d  =  D  ->  (
x  e.  U. U. d  |->  ( d " { x } ) )  =  ( x  e.  U. U. D  |->  ( D " {
x } ) ) )
9 df-tail 14188 . . . 4  |-  tail  =  ( d  e.  DirRel  |->  ( x  e.  U. U. d  |->  ( d " { x } ) ) )
108, 9fvmptg 5452 . . 3  |-  ( ( D  e.  DirRel  /\  (
x  e.  U. U. D  |->  ( D " { x } ) )  e.  _V )  ->  ( tail `  D
)  =  ( x  e.  U. U. D  |->  ( D " {
x } ) ) )
114, 10mpdan 652 . 2  |-  ( D  e.  DirRel  ->  ( tail `  D
)  =  ( x  e.  U. U. D  |->  ( D " {
x } ) ) )
12 tailfval.1 . . . 4  |-  X  =  dom  D
13 dirdm 14191 . . . 4  |-  ( D  e.  DirRel  ->  dom  D  =  U. U. D )
1412, 13syl5req 2298 . . 3  |-  ( D  e.  DirRel  ->  U. U. D  =  X )
15 eqidd 2254 . . 3  |-  ( D  e.  DirRel  ->  ( D " { x } )  =  ( D " { x } ) )
1614, 15mpteq12dv 3995 . 2  |-  ( D  e.  DirRel  ->  ( x  e. 
U. U. D  |->  ( D
" { x }
) )  =  ( x  e.  X  |->  ( D " { x } ) ) )
1711, 16eqtrd 2285 1  |-  ( D  e.  DirRel  ->  ( tail `  D
)  =  ( x  e.  X  |->  ( D
" { x }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   _Vcvv 2727   {csn 3544   U.cuni 3727    e. cmpt 3974   dom cdm 4580   "cima 4583   ` cfv 4592   DirRelcdir 14185   tailctail 14186
This theorem is referenced by:  tailval  25488  tailf  25490
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-dir 14187  df-tail 14188
  Copyright terms: Public domain W3C validator