MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supexpr Unicode version

Theorem supexpr 8558
Description: The union of a non-empty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
supexpr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supexpr
StepHypRef Expression
1 suplem1pr 8556 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
2 ltrelpr 8502 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
32brel 4644 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
43simpld 447 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
54ralimi 2580 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
6 dfss3 3093 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
75, 6sylibr 205 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
87rexlimivw 2625 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
98adantl 454 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
10 suplem2pr 8557 . . . . . 6  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
1110simpld 447 . . . . 5  |-  ( A 
C_  P.  ->  ( y  e.  A  ->  -.  U. A  <P  y )
)
1211ralrimiv 2587 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  A  -.  U. A  <P  y )
1310simprd 451 . . . . 5  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  E. z  e.  A  y  <P  z ) )
1413ralrimivw 2589 . . . 4  |-  ( A 
C_  P.  ->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) )
1512, 14jca 520 . . 3  |-  ( A 
C_  P.  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
169, 15syl 17 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
17 breq1 3923 . . . . . 6  |-  ( x  =  U. A  -> 
( x  <P  y  <->  U. A  <P  y )
)
1817notbid 287 . . . . 5  |-  ( x  =  U. A  -> 
( -.  x  <P  y  <->  -.  U. A  <P  y
) )
1918ralbidv 2527 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  U. A  <P  y
) )
20 breq2 3924 . . . . . 6  |-  ( x  =  U. A  -> 
( y  <P  x  <->  y 
<P  U. A ) )
2120imbi1d 310 . . . . 5  |-  ( x  =  U. A  -> 
( ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2221ralbidv 2527 . . . 4  |-  ( x  =  U. A  -> 
( A. y  e. 
P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
2319, 22anbi12d 694 . . 3  |-  ( x  =  U. A  -> 
( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <-> 
( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) ) )
2423rcla4ev 2821 . 2  |-  ( ( U. A  e.  P.  /\  ( A. y  e.  A  -.  U. A  <P  y  /\  A. y  e.  P.  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
251, 16, 24syl2anc 645 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    C_ wss 3078   (/)c0 3362   U.cuni 3727   class class class wbr 3920   P.cnp 8361    <P cltp 8365
This theorem is referenced by:  supsrlem  8613
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-oadd 6369  df-omul 6370  df-er 6546  df-ni 8376  df-mi 8378  df-lti 8379  df-ltpq 8414  df-enq 8415  df-nq 8416  df-ltnq 8422  df-np 8485  df-ltp 8489
  Copyright terms: Public domain W3C validator