MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Unicode version

Theorem subcn2 11945
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem subcn2
StepHypRef Expression
1 negcl 8932 . . 3  |-  ( C  e.  CC  ->  -u C  e.  CC )
2 addcn2 11944 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  -u C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A ) )
31, 2syl3an3 1222 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A ) )
4 negcl 8932 . . . . . . . . 9  |-  ( v  e.  CC  ->  -u v  e.  CC )
5 oveq1 5717 . . . . . . . . . . . . . 14  |-  ( w  =  -u v  ->  (
w  -  -u C
)  =  ( -u v  -  -u C ) )
65fveq2d 5381 . . . . . . . . . . . . 13  |-  ( w  =  -u v  ->  ( abs `  ( w  -  -u C ) )  =  ( abs `  ( -u v  -  -u C
) ) )
76breq1d 3930 . . . . . . . . . . . 12  |-  ( w  =  -u v  ->  (
( abs `  (
w  -  -u C
) )  <  z  <->  ( abs `  ( -u v  -  -u C ) )  <  z ) )
87anbi2d 687 . . . . . . . . . . 11  |-  ( w  =  -u v  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
y  /\  ( abs `  ( -u v  -  -u C ) )  < 
z ) ) )
9 oveq2 5718 . . . . . . . . . . . . . 14  |-  ( w  =  -u v  ->  (
u  +  w )  =  ( u  +  -u v ) )
109oveq1d 5725 . . . . . . . . . . . . 13  |-  ( w  =  -u v  ->  (
( u  +  w
)  -  ( B  +  -u C ) )  =  ( ( u  +  -u v )  -  ( B  +  -u C
) ) )
1110fveq2d 5381 . . . . . . . . . . . 12  |-  ( w  =  -u v  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  =  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) ) )
1211breq1d 3930 . . . . . . . . . . 11  |-  ( w  =  -u v  ->  (
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A  <->  ( abs `  ( ( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) )
138, 12imbi12d 313 . . . . . . . . . 10  |-  ( w  =  -u v  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  <->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
1413rcla4v 2817 . . . . . . . . 9  |-  ( -u v  e.  CC  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  ->  ( (
( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
154, 14syl 17 . . . . . . . 8  |-  ( v  e.  CC  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  ->  ( (
( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
1615adantl 454 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
17 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  v  e.  CC )
18 simpll3 1001 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  C  e.  CC )
1917, 18neg2subd 9054 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( -u v  -  -u C )  =  ( C  -  v
) )
2019fveq2d 5381 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( -u v  -  -u C
) )  =  ( abs `  ( C  -  v ) ) )
2118, 17abssubd 11812 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( C  -  v )
)  =  ( abs `  ( v  -  C
) ) )
2220, 21eqtrd 2285 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( -u v  -  -u C
) )  =  ( abs `  ( v  -  C ) ) )
2322breq1d 3930 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( abs `  ( -u v  -  -u C ) )  < 
z  <->  ( abs `  (
v  -  C ) )  <  z ) )
2423anbi2d 687 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
y  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
25 negsub 8975 . . . . . . . . . . . 12  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  -u v )  =  ( u  -  v ) )
2625adantll 697 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( u  +  -u v )  =  ( u  -  v ) )
27 simpll2 1000 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  B  e.  CC )
2827, 18negsubd 9043 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( B  +  -u C )  =  ( B  -  C ) )
2926, 28oveq12d 5728 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( u  +  -u v )  -  ( B  +  -u C
) )  =  ( ( u  -  v
)  -  ( B  -  C ) ) )
3029fveq2d 5381 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  =  ( abs `  ( ( u  -  v )  -  ( B  -  C ) ) ) )
3130breq1d 3930 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( abs `  ( ( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A  <->  ( abs `  ( ( u  -  v )  -  ( B  -  C ) ) )  <  A ) )
3224, 31imbi12d 313 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( ( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
)  <->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3316, 32sylibd 207 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
3433ralrimdva 2595 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3534ralimdva 2583 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A )  ->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
3635reximdv 2616 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3736reximdv 2616 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
383, 37mpd 16 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615    + caddc 8620    < clt 8747    - cmin 8917   -ucneg 8918   RR+crp 10233   abscabs 11596
This theorem is referenced by:  climsub  11984  rlimsub  11994  subcn  18202
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598
  Copyright terms: Public domain W3C validator