MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg4r Unicode version

Theorem selberg4r 21217
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
selberg4r  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
Distinct variable groups:    m, a, n, x    R, m, n, x
Allowed substitution hint:    R( a)

Proof of Theorem selberg4r
StepHypRef Expression
1 elioore 10902 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
21adantl 453 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
3 1rp 10572 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
54rpred 10604 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
6 eliooord 10926 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
76adantl 453 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
87simpld 446 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
95, 2, 8ltled 9177 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 10639 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
11 pntrval.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1211pntrval 21209 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
1310, 12syl 16 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  =  ( (ψ `  x )  -  x
) )
1413oveq1d 6055 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  -  x
)  x.  ( log `  x ) ) )
15 chpcl 20860 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
162, 15syl 16 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (ψ `  x )  e.  RR )
1716recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (ψ `  x )  e.  CC )
182recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  CC )
1910relogcld 20471 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
2019recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
2117, 18, 20subdird 9446 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  -  x )  x.  ( log `  x
) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( x  x.  ( log `  x ) ) ) )
2214, 21eqtrd 2436 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) ) )
2310ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  e.  RR+ )
24 elfznn 11036 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2524adantl 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2625nnrpd 10603 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2726adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
2823, 27rpdivcld 10621 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  RR+ )
29 elfznn 11036 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3029adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
3130nnrpd 10603 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
3228, 31rpdivcld 10621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  RR+ )
3311pntrval 21209 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  /  n
)  /  m )  e.  RR+  ->  ( R `
 ( ( x  /  n )  /  m ) )  =  ( (ψ `  (
( x  /  n
)  /  m ) )  -  ( ( x  /  n )  /  m ) ) )
3432, 33syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( R `  ( ( x  /  n )  /  m
) )  =  ( (ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) )
3534oveq2d 6056 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) )  =  ( (Λ `  m )  x.  (
(ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) ) )
36 vmacl 20854 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
3730, 36syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  RR )
3837recnd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  m
)  e.  CC )
392adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
4039, 25nndivred 10004 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
4140adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  RR )
4241, 30nndivred 10004 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  RR )
43 chpcl 20860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  /  n
)  /  m )  e.  RR  ->  (ψ `  ( ( x  /  n )  /  m
) )  e.  RR )
4442, 43syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (ψ `  (
( x  /  n
)  /  m ) )  e.  RR )
4544recnd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (ψ `  (
( x  /  n
)  /  m ) )  e.  CC )
4642recnd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  /  m )  e.  CC )
4738, 45, 46subdid 9445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
(ψ `  ( (
x  /  n )  /  m ) )  -  ( ( x  /  n )  /  m ) ) )  =  ( ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
4835, 47eqtrd 2436 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) )  =  ( ( (Λ `  m )  x.  (ψ `  ( (
x  /  n )  /  m ) ) )  -  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )
4948sumeq2dv 12452 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
50 fzfid 11267 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
5137, 44remulcld 9072 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  RR )
5251recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  CC )
5338, 46mulcld 9064 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  CC )
5450, 52, 53fsumsub 12526 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
5549, 54eqtrd 2436 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) )
5655oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) ) ) )
57 vmacl 20854 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
5825, 57syl 16 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
5958recnd 9070 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6050, 51fsumrecl 12483 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  RR )
6160recnd 9070 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) )  e.  CC )
6250, 53fsumcl 12482 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  CC )
6359, 61, 62subdid 9445 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  (ψ `  ( (
x  /  n )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  =  ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
6456, 63eqtrd 2436 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) )  =  ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
6564sumeq2dv 12452 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
66 fzfid 11267 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
6758, 60remulcld 9072 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  RR )
6867recnd 9070 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  CC )
6959, 62mulcld 9064 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  CC )
7066, 68, 69fsumsub 12526 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
7165, 70eqtrd 2436 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )
7271oveq2d 6056 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
73 2re 10025 . . . . . . . . . . . . 13  |-  2  e.  RR
7473a1i 11 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  RR )
752, 8rplogcld 20477 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
7674, 75rerpdivcld 10631 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
7776recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
7866, 67fsumrecl 12483 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  RR )
7978recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  e.  CC )
8066, 69fsumcl 12482 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  CC )
8177, 79, 80subdid 9445 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
8272, 81eqtrd 2436 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )
8322, 82oveq12d 6058 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
x  x.  ( log `  x ) ) )  -  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) ) )
8416, 19remulcld 9072 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
8584recnd 9070 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  CC )
8618, 20mulcld 9064 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
8776, 78remulcld 9072 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  e.  RR )
8887recnd 9070 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  e.  CC )
8977, 80mulcld 9064 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  CC )
9085, 86, 88, 89sub4d 9416 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( x  x.  ( log `  x
) ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) )  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) ) )
9183, 90eqtrd 2436 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) ) )
9291oveq1d 6055 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x ) )
9384, 87resubcld 9421 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  e.  RR )
9493recnd 9070 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  e.  CC )
952, 19remulcld 9072 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR )
9637, 42remulcld 9072 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  RR )
9750, 96fsumrecl 12483 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  RR )
9858, 97remulcld 9072 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  RR )
9966, 98fsumrecl 12483 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  RR )
10076, 99remulcld 9072 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  RR )
10195, 100resubcld 9421 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  e.  RR )
102101recnd 9070 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  e.  CC )
10310rpne0d 10609 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  =/=  0 )
10494, 102, 18, 103divsubdird 9785 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) ) )
10595recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
10699recnd 9070 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  e.  CC )
10777, 106mulcld 9064 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  e.  CC )
108105, 107, 18, 103divsubdird 9785 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  /  x )  =  ( ( ( x  x.  ( log `  x
) )  /  x
)  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  /  x
) ) )
10920, 18, 103divcan3d 9751 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( x  x.  ( log `  x ) )  /  x )  =  ( log `  x
) )
11077, 106, 18, 103divassd 9781 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )  /  x )  =  ( ( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) ) )
11198recnd 9070 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )  e.  CC )
11266, 18, 111, 103fsumdivc 12524 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) )
11341recnd 9070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( x  /  n )  e.  CC )
11430nncnd 9972 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  CC )
11530nnne0d 10000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  =/=  0 )
116113, 38, 114, 115div12d 9782 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  x.  ( (Λ `  m
)  /  m ) )  =  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) )
11718adantr 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
118117adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  e.  CC )
11925nncnd 9972 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
120119adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  CC )
12137, 30nndivred 10004 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  RR )
122121recnd 9070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  /  m
)  e.  CC )
12325nnne0d 10000 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
124123adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  =/=  0 )
125118, 120, 122, 124div32d 9769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  /  n )  x.  ( (Λ `  m
)  /  m ) )  =  ( x  x.  ( ( (Λ `  m )  /  m
)  /  n ) ) )
126116, 125eqtr3d 2438 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  =  ( x  x.  ( ( (Λ `  m )  /  m
)  /  n ) ) )
127126oveq1d 6055 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
)  =  ( ( x  x.  ( ( (Λ `  m )  /  m )  /  n
) )  /  x
) )
12825adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  NN )
129121, 128nndivred 10004 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  /  m )  /  n
)  e.  RR )
130129recnd 9070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  /  m )  /  n
)  e.  CC )
131103adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  =/=  0 )
132131adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  x  =/=  0 )
133130, 118, 132divcan3d 9751 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
x  x.  ( ( (Λ `  m )  /  m )  /  n
) )  /  x
)  =  ( ( (Λ `  m )  /  m )  /  n
) )
134127, 133eqtrd 2436 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
)  =  ( ( (Λ `  m )  /  m )  /  n
) )
135134sumeq2dv 12452 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( (Λ `  m
)  /  m )  /  n ) )
13696recnd 9070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  e.  CC )
13750, 117, 136, 131fsumdivc 12524 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  /  x )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x ) )
13850, 119, 122, 123fsumdivc 12524 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
)  /  n )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  m
)  /  m )  /  n ) )
139135, 137, 1383eqtr4d 2446 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) )  /  x )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) )
140139oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) )  /  x
) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) ) )
14197recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  e.  CC )
14259, 141, 117, 131divassd 9781 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  /  x )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) )  /  x ) ) )
14350, 121fsumrecl 12483 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  RR )
144143recnd 9070 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  e.  CC )
14559, 119, 144, 123div32d 9769 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  =  ( (Λ `  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m )  /  n ) ) )
146140, 142, 1453eqtr4d 2446 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  m )  x.  ( ( x  /  n )  /  m
) ) )  /  x )  =  ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
147146sumeq2dv 12452 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
148112, 147eqtrd 2436 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )
149148oveq2d 6056 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) )  /  x ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
150110, 149eqtrd 2436 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) )  /  x )  =  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
151109, 150oveq12d 6058 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  /  x
)  -  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) )  /  x
) )  =  ( ( log `  x
)  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) ) )
152108, 151eqtrd 2436 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( x  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( ( x  /  n )  /  m ) ) ) ) )  /  x )  =  ( ( log `  x
)  -  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) ) )
153152oveq2d 6056 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( log `  x )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) ) ) ) )
15494, 18, 103divcld 9746 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  e.  CC )
15558, 25nndivred 10004 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
156155, 143remulcld 9072 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  e.  RR )
15766, 156fsumrecl 12483 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  RR )
15876, 157remulcld 9072 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  e.  RR )
159158recnd 9070 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  e.  CC )
160154, 20, 159subsub2d 9396 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( log `  x )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) ) ) )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
161153, 160eqtrd 2436 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  -  ( ( ( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) )  /  x ) )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
162104, 161eqtrd 2436 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  -  (
( x  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (
( x  /  n
)  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
16392, 162eqtrd 2436 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )
164163mpteq2dva 4255 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) ) )
16593, 10rerpdivcld 10631 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  e.  RR )
166158, 19resubcld 9421 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) )  e.  RR )
167 selberg4 21208 . . . . 5  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( (ψ `  x
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
) )  e.  O
( 1 )
168167a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( (ψ `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
) )  e.  O
( 1 ) )
169 2cn 10026 . . . . . . . . 9  |-  2  e.  CC
170169a1i 11 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  CC )
171157, 75rerpdivcld 10631 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  RR )
172171recnd 9070 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  e.  CC )
17319rehalfcld 10170 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  RR )
174173recnd 9070 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
175170, 172, 174subdid 9445 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  =  ( ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x
)  /  2 ) ) ) )
176157recnd 9070 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  e.  CC )
17775rpne0d 10609 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
178170, 20, 176, 177div32d 9769 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) ) ) )
179178eqcomd 2409 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) )  /  ( log `  x ) ) )  =  ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) ) )
180 2ne0 10039 . . . . . . . . . 10  |-  2  =/=  0
181180a1i 11 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  =/=  0 )
18220, 170, 181divcan2d 9748 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( ( log `  x )  /  2 ) )  =  ( log `  x
) )
183179, 182oveq12d 6058 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) ) )  -  ( 2  x.  ( ( log `  x
)  /  2 ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )
184175, 183eqtrd 2436 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
2  x.  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  =  ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )
185184mpteq2dva 4255 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) ) )
186171, 173resubcld 9421 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) )  e.  RR )
187 ioossre 10928 . . . . . . 7  |-  ( 1 (,)  +oo )  C_  RR
188169a1i 11 . . . . . . 7  |-  (  T. 
->  2  e.  CC )
189 o1const 12368 . . . . . . 7  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  2  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  2 )  e.  O ( 1 ) )
190187, 188, 189sylancr 645 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  2 )  e.  O
( 1 ) )
191 2vmadivsum 21188 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O
( 1 )
192191a1i 11 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
19374, 186, 190, 192o1mul2 12373 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 2  x.  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) )  /  ( log `  x ) )  -  ( ( log `  x
)  /  2 ) ) ) )  e.  O ( 1 ) )
194185, 193eqeltrrd 2479 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  /  m
) ) )  -  ( log `  x ) ) )  e.  O
( 1 ) )
195165, 166, 168, 194o1add2 12372 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  (ψ `  ( ( x  /  n )  /  m
) ) ) ) ) )  /  x
)  +  ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  m
)  /  m ) ) )  -  ( log `  x ) ) ) )  e.  O
( 1 ) )
196164, 195eqeltrd 2478 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  m
)  x.  ( R `
 ( ( x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 ) )
197196trud 1329 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  m )  x.  ( R `  ( (
x  /  n )  /  m ) ) ) ) ) )  /  x ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721    =/= wne 2567    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   RR+crp 10568   (,)cioo 10872   ...cfz 10999   |_cfl 11156   O ( 1 )co1 12235   sum_csu 12434   logclog 20405  Λcvma 20827  ψcchp 20828
This theorem is referenced by:  selberg34r  21218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz