MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem2 Unicode version

Theorem selberg3lem2 20539
Description: Lemma for selberg3 20540. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3lem2  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem selberg3lem2
StepHypRef Expression
1 1re 8717 . . . . . . . 8  |-  1  e.  RR
2 elicopnf 10617 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
y  e.  ( 1 [,)  +oo )  <->  ( y  e.  RR  /\  1  <_ 
y ) ) )
31, 2ax-mp 10 . . . . . . 7  |-  ( y  e.  ( 1 [,) 
+oo )  <->  ( y  e.  RR  /\  1  <_ 
y ) )
43simplbi 448 . . . . . 6  |-  ( y  e.  ( 1 [,) 
+oo )  ->  y  e.  RR )
54ssriv 3105 . . . . 5  |-  ( 1 [,)  +oo )  C_  RR
65a1i 12 . . . 4  |-  (  T. 
->  ( 1 [,)  +oo )  C_  RR )
71a1i 12 . . . 4  |-  (  T. 
->  1  e.  RR )
8 fzfid 10913 . . . . . . . 8  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  (
1 ... ( |_ `  y ) )  e. 
Fin )
9 elfznn 10697 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  y
) )  ->  m  e.  NN )
109adantl 454 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  m  e.  NN )
11 vmacl 20188 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1210, 11syl 17 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  (Λ `  m
)  e.  RR )
1310nnrpd 10268 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  m  e.  RR+ )
1413relogcld 19806 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( log `  m )  e.  RR )
1512, 14remulcld 8743 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  ( (Λ `  m )  x.  ( log `  m ) )  e.  RR )
168, 15fsumrecl 12084 . . . . . . 7  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  e.  RR )
174adantl 454 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  y  e.  RR )
18 chpcl 20194 . . . . . . . . 9  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
1917, 18syl 17 . . . . . . . 8  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  (ψ `  y )  e.  RR )
20 1rp 10237 . . . . . . . . . . 11  |-  1  e.  RR+
2120a1i 12 . . . . . . . . . 10  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR+ )
223simprbi 452 . . . . . . . . . . 11  |-  ( y  e.  ( 1 [,) 
+oo )  ->  1  <_  y )
2322adantl 454 . . . . . . . . . 10  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  1  <_  y )
2417, 21, 23rpgecld 10304 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  y  e.  RR+ )
2524relogcld 19806 . . . . . . . 8  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  ( log `  y )  e.  RR )
2619, 25remulcld 8743 . . . . . . 7  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  (
(ψ `  y )  x.  ( log `  y
) )  e.  RR )
2716, 26resubcld 9091 . . . . . 6  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) )  e.  RR )
2827, 24rerpdivcld 10296 . . . . 5  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  (
( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y )  e.  RR )
2928recnd 8741 . . . 4  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  (
( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y )  e.  CC )
3024ex 425 . . . . . 6  |-  (  T. 
->  ( y  e.  ( 1 [,)  +oo )  ->  y  e.  RR+ )
)
3130ssrdv 3106 . . . . 5  |-  (  T. 
->  ( 1 [,)  +oo )  C_  RR+ )
32 selberg2lem 20531 . . . . . 6  |-  ( y  e.  RR+  |->  ( (
sum_ m  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  e.  O ( 1 )
3332a1i 12 . . . . 5  |-  (  T. 
->  ( y  e.  RR+  |->  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  e.  O ( 1 ) )
3431, 33o1res2 11914 . . . 4  |-  (  T. 
->  ( y  e.  ( 1 [,)  +oo )  |->  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  e.  O ( 1 ) )
35 fzfid 10913 . . . . . 6  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
36 elfznn 10697 . . . . . . . . 9  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
3736adantl 454 . . . . . . . 8  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  m  e.  NN )
3837, 11syl 17 . . . . . . 7  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  (Λ `  m
)  e.  RR )
3937nnrpd 10268 . . . . . . . 8  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  m  e.  RR+ )
4039relogcld 19806 . . . . . . 7  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( log `  m )  e.  RR )
4138, 40remulcld 8743 . . . . . 6  |-  ( ( (  T.  /\  (
x  e.  RR  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( (Λ `  m )  x.  ( log `  m ) )  e.  RR )
4235, 41fsumrecl 12084 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  m )  x.  ( log `  m
) )  e.  RR )
43 chpcl 20194 . . . . . . 7  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
4443ad2antrl 711 . . . . . 6  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
(ψ `  x )  e.  RR )
45 simprl 735 . . . . . . . 8  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  ->  x  e.  RR )
4620a1i 12 . . . . . . . 8  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
1  e.  RR+ )
47 simprr 736 . . . . . . . 8  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
1  <_  x )
4845, 46, 47rpgecld 10304 . . . . . . 7  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  ->  x  e.  RR+ )
4948relogcld 19806 . . . . . 6  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
5044, 49remulcld 8743 . . . . 5  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( (ψ `  x
)  x.  ( log `  x ) )  e.  RR )
5142, 50readdcld 8742 . . . 4  |-  ( (  T.  /\  ( x  e.  RR  /\  1  <_  x ) )  -> 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  m
)  x.  ( log `  m ) )  +  ( (ψ `  x
)  x.  ( log `  x ) ) )  e.  RR )
5227adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  m )  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y ) ) )  e.  RR )
5352recnd 8741 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  m )  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y ) ) )  e.  CC )
5424adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  y  e.  RR+ )
5554rpcnd 10271 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  y  e.  CC )
5654rpne0d 10274 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  y  =/=  0 )
5753, 55, 56absdivd 11814 . . . . . 6  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  =  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) ) )  /  ( abs `  y
) ) )
5817adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  y  e.  RR )
5954rpge0d 10273 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  0  <_  y )
6058, 59absidd 11782 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  y )  =  y )
6160oveq2d 5726 . . . . . 6  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  /  ( abs `  y
) )  =  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) ) )  /  y ) )
6257, 61eqtrd 2285 . . . . 5  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  =  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) ) )  /  y ) )
6353abscld 11795 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  e.  RR )
6463, 54rerpdivcld 10296 . . . . . 6  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  /  y )  e.  RR )
6542ad2ant2r 730 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  m
)  x.  ( log `  m ) )  e.  RR )
66 simprll 741 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  x  e.  RR )
6766, 43syl 17 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  (ψ `  x
)  e.  RR )
68 simprr 736 . . . . . . . . . . 11  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  y  <  x )
6958, 66, 68ltled 8847 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  y  <_  x )
7066, 54, 69rpgecld 10304 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  x  e.  RR+ )
7170relogcld 19806 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( log `  x )  e.  RR )
7267, 71remulcld 8743 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  RR )
7365, 72readdcld 8742 . . . . . 6  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  m )  x.  ( log `  m ) )  +  ( (ψ `  x )  x.  ( log `  x ) ) )  e.  RR )
7420a1i 12 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  1  e.  RR+ )
7553absge0d 11803 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  0  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  m )  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y ) ) ) ) )
7623adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  1  <_  y )
7774, 54, 63, 75, 76lediv2ad 10291 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  /  y )  <_ 
( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) ) )  /  1 ) )
7863recnd 8741 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  e.  CC )
7978div1d 9408 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  /  1 )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) ) ) )
8077, 79breqtrd 3944 . . . . . 6  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  /  y )  <_ 
( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) )  -  (
(ψ `  y )  x.  ( log `  y
) ) ) ) )
8116adantr 453 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  e.  RR )
8258, 18syl 17 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  (ψ `  y
)  e.  RR )
8354relogcld 19806 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( log `  y )  e.  RR )
8482, 83remulcld 8743 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( (ψ `  y )  x.  ( log `  y ) )  e.  RR )
8581, 84readdcld 8742 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  m )  x.  ( log `  m ) )  +  ( (ψ `  y )  x.  ( log `  y ) ) )  e.  RR )
8681recnd 8741 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  e.  CC )
8726adantr 453 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( (ψ `  y )  x.  ( log `  y ) )  e.  RR )
8887recnd 8741 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( (ψ `  y )  x.  ( log `  y ) )  e.  CC )
8986, 88abs2dif2d 11817 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  <_  ( ( abs `  sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) ) )  +  ( abs `  (
(ψ `  y )  x.  ( log `  y
) ) ) ) )
90 vmage0 20191 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  0  <_  (Λ `  m )
)
9110, 90syl 17 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  (Λ `  m ) )
9210nnred 9641 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  m  e.  RR )
9310nnge1d 9668 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  1  <_  m )
9492, 93logge0d 19813 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  ( log `  m ) )
9512, 14, 91, 94mulge0d 9229 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  y ) ) )  ->  0  <_  ( (Λ `  m )  x.  ( log `  m
) ) )
968, 15, 95fsumge0 12130 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  ->  0  <_ 
sum_ m  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) ) )
9796adantr 453 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  0  <_  sum_
m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) ) )
9881, 97absidd 11782 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  y ) ) ( (Λ `  m )  x.  ( log `  m
) ) )
99 chpge0 20196 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  0  <_  (ψ `  y )
)
10058, 99syl 17 . . . . . . . . . . 11  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  0  <_  (ψ `  y ) )
10158, 76logge0d 19813 . . . . . . . . . . 11  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  0  <_  ( log `  y ) )
10282, 83, 100, 101mulge0d 9229 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  0  <_  ( (ψ `  y )  x.  ( log `  y
) ) )
10387, 102absidd 11782 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( (ψ `  y
)  x.  ( log `  y ) ) )  =  ( (ψ `  y )  x.  ( log `  y ) ) )
10498, 103oveq12d 5728 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) ) )  +  ( abs `  (
(ψ `  y )  x.  ( log `  y
) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  +  ( (ψ `  y
)  x.  ( log `  y ) ) ) )
10589, 104breqtrd 3944 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  +  ( (ψ `  y
)  x.  ( log `  y ) ) ) )
106 fzfid 10913 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
10736adantl 454 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
108107, 11syl 17 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  m )  e.  RR )
109107nnrpd 10268 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  RR+ )
110109relogcld 19806 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  m
)  e.  RR )
111108, 110remulcld 8743 . . . . . . . . 9  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  m
)  x.  ( log `  m ) )  e.  RR )
112107, 90syl 17 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  m ) )
113107nnred 9641 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  RR )
114107nnge1d 9668 . . . . . . . . . . 11  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  m
)
115113, 114logge0d 19813 . . . . . . . . . 10  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  m ) )
116108, 110, 112, 115mulge0d 9229 . . . . . . . . 9  |-  ( ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  ( ( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (
(Λ `  m )  x.  ( log `  m
) ) )
117 flword2 10821 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  x  e.  RR  /\  y  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  y ) ) )
11858, 66, 69, 117syl3anc 1187 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  ( |_ `  y ) ) )
119 fzss2 10709 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  ( ZZ>= `  ( |_ `  y ) )  ->  ( 1 ... ( |_ `  y
) )  C_  (
1 ... ( |_ `  x ) ) )
120118, 119syl 17 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( 1 ... ( |_ `  y ) )  C_  ( 1 ... ( |_ `  x ) ) )
121106, 111, 116, 120fsumless 12131 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  m )  x.  ( log `  m
) ) )
122 chpwordi 20227 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR  /\  y  <_  x )  ->  (ψ `  y )  <_  (ψ `  x ) )
12358, 66, 69, 122syl3anc 1187 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  (ψ `  y
)  <_  (ψ `  x
) )
12454, 70logled 19810 . . . . . . . . . 10  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( y  <_  x  <->  ( log `  y
)  <_  ( log `  x ) ) )
12569, 124mpbid 203 . . . . . . . . 9  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( log `  y )  <_  ( log `  x ) )
12682, 67, 83, 71, 100, 101, 123, 125lemul12ad 9579 . . . . . . . 8  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( (ψ `  y )  x.  ( log `  y ) )  <_  ( (ψ `  x )  x.  ( log `  x ) ) )
12781, 84, 65, 72, 121, 126le2addd 9270 . . . . . . 7  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  y
) ) ( (Λ `  m )  x.  ( log `  m ) )  +  ( (ψ `  y )  x.  ( log `  y ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  m )  x.  ( log `  m ) )  +  ( (ψ `  x )  x.  ( log `  x ) ) ) )
12863, 85, 73, 105, 127letrd 8853 . . . . . 6  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  <_  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  m
)  x.  ( log `  m ) )  +  ( (ψ `  x
)  x.  ( log `  x ) ) ) )
12964, 63, 73, 80, 128letrd 8853 . . . . 5  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) ) )  /  y )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  m
)  x.  ( log `  m ) )  +  ( (ψ `  x
)  x.  ( log `  x ) ) ) )
13062, 129eqbrtrd 3940 . . . 4  |-  ( ( (  T.  /\  y  e.  ( 1 [,)  +oo ) )  /\  (
( x  e.  RR  /\  1  <_  x )  /\  y  <  x ) )  ->  ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  m
)  x.  ( log `  m ) )  +  ( (ψ `  x
)  x.  ( log `  x ) ) ) )
1316, 7, 29, 34, 51, 130o1bddrp 11893 . . 3  |-  (  T. 
->  E. c  e.  RR+  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c )
132131trud 1320 . 2  |-  E. c  e.  RR+  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c
133 simpl 445 . . . 4  |-  ( ( c  e.  RR+  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c )  ->  c  e.  RR+ )
134 simpr 449 . . . 4  |-  ( ( c  e.  RR+  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c )
135133, 134selberg3lem1 20538 . . 3  |-  ( ( c  e.  RR+  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( ( sum_ m  e.  ( 1 ... ( |_ `  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c )  ->  (
x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  e.  O ( 1 ) )
136135rexlimiva 2624 . 2  |-  ( E. c  e.  RR+  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
( sum_ m  e.  ( 1 ... ( |_
`  y ) ) ( (Λ `  m
)  x.  ( log `  m ) )  -  ( (ψ `  y )  x.  ( log `  y
) ) )  / 
y ) )  <_ 
c  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  e.  O ( 1 ) )
137132, 136ax-mp 10 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    T. wtru 1312    e. wcel 1621   A.wral 2509   E.wrex 2510    C_ wss 3078   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   ZZ>=cuz 10109   RR+crp 10233   (,)cioo 10534   [,)cico 10536   ...cfz 10660   |_cfl 10802   abscabs 11596   O ( 1 )co1 11837   sum_csu 12035   logclog 19744  Λcvma 20161  ψcchp 20162
This theorem is referenced by:  selberg3  20540  selberg4  20542
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-cht 20166  df-vma 20167  df-chp 20168  df-ppi 20169
  Copyright terms: Public domain W3C validator