Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segconeq Unicode version

Theorem segconeq 23807
Description: Two points that satsify the conclusion of axsegcon 23729 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
segconeq  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  X  =  Y ) )

Proof of Theorem segconeq
StepHypRef Expression
1 simpr2l 1019 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  A  Btwn  <. Q ,  X >. )
21, 1jca 520 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( A  Btwn  <. Q ,  X >.  /\  A  Btwn  <. Q ,  X >. ) )
3 simpl1 963 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  N  e.  NN )
4 simpl31 1041 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  Q  e.  ( EE `  N
) )
5 simpl21 1038 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  A  e.  ( EE `  N
) )
63, 4, 5cgrrflxd 23785 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. Q ,  A >.Cgr <. Q ,  A >. )
7 simpl32 1042 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  X  e.  ( EE `  N
) )
83, 5, 7cgrrflxd 23785 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  X >. )
96, 8jca 520 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\ 
<. A ,  X >.Cgr <. A ,  X >. ) )
10 simpl33 1043 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  Y  e.  ( EE `  N
) )
114, 5, 103jca 1137 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )
124, 5, 73jca 1137 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  X  e.  ( EE `  N ) ) )
133, 11, 123jca 1137 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  X  e.  ( EE `  N ) ) ) )
14 simpr3l 1021 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  A  Btwn  <. Q ,  Y >. )
1514, 1jca 520 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( A  Btwn  <. Q ,  Y >.  /\  A  Btwn  <. Q ,  X >. ) )
16 simpl22 1039 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  B  e.  ( EE `  N
) )
17 simpl23 1040 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  C  e.  ( EE `  N
) )
18 simpr3r 1022 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  Y >.Cgr <. B ,  C >. )
19 cgrcom 23787 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  Y  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. A ,  Y >.Cgr <. B ,  C >.  <->  <. B ,  C >.Cgr <. A ,  Y >. ) )
203, 5, 10, 16, 17, 19syl122anc 1196 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( <. A ,  Y >.Cgr <. B ,  C >.  <->  <. B ,  C >.Cgr <. A ,  Y >. ) )
2118, 20mpbid 203 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. B ,  C >.Cgr <. A ,  Y >. )
22 simpr2r 1020 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  X >.Cgr <. B ,  C >. )
23 cgrcom 23787 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  X  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. A ,  X >.Cgr <. B ,  C >.  <->  <. B ,  C >.Cgr <. A ,  X >. ) )
243, 5, 7, 16, 17, 23syl122anc 1196 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( <. A ,  X >.Cgr <. B ,  C >.  <->  <. B ,  C >.Cgr <. A ,  X >. ) )
2522, 24mpbid 203 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. B ,  C >.Cgr <. A ,  X >. )
263, 16, 17, 5, 10, 5, 7, 21, 25cgrtr4d 23782 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  Y >.Cgr <. A ,  X >. )
2715, 6, 26jca32 523 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  (
( A  Btwn  <. Q ,  Y >.  /\  A  Btwn  <. Q ,  X >. )  /\  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\  <. A ,  Y >.Cgr
<. A ,  X >. ) ) )
28 cgrextend 23805 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  Y  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  X  e.  ( EE `  N ) ) )  ->  (
( ( A  Btwn  <. Q ,  Y >.  /\  A  Btwn  <. Q ,  X >. )  /\  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\ 
<. A ,  Y >.Cgr <. A ,  X >. ) )  ->  <. Q ,  Y >.Cgr <. Q ,  X >. ) )
2913, 27, 28sylc 58 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. Q ,  Y >.Cgr <. Q ,  X >. )
3029, 26jca 520 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  ( <. Q ,  Y >.Cgr <. Q ,  X >.  /\ 
<. A ,  Y >.Cgr <. A ,  X >. ) )
312, 9, 303jca 1137 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  /\  ( A  Btwn  <. Q ,  Y >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  (
( A  Btwn  <. Q ,  X >.  /\  A  Btwn  <. Q ,  X >. )  /\  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\  <. A ,  X >.Cgr
<. A ,  X >. )  /\  ( <. Q ,  Y >.Cgr <. Q ,  X >.  /\  <. A ,  Y >.Cgr
<. A ,  X >. ) ) )
3231ex 425 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  ( ( A  Btwn  <. Q ,  X >.  /\  A  Btwn  <. Q ,  X >. )  /\  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\ 
<. A ,  X >.Cgr <. A ,  X >. )  /\  ( <. Q ,  Y >.Cgr <. Q ,  X >.  /\  <. A ,  Y >.Cgr
<. A ,  X >. ) ) ) )
33 simp1 960 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  N  e.  NN )
34 simp31 996 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  Q  e.  ( EE `  N
) )
35 simp21 993 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
36 simp32 997 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  X  e.  ( EE `  N
) )
37 simp33 998 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  Y  e.  ( EE `  N
) )
38 brofs 23802 . . . . 5  |-  ( ( ( N  e.  NN  /\  Q  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  X  e.  ( EE `  N ) ) )  ->  ( <. <. Q ,  A >. ,  <. X ,  Y >. >. 
OuterFiveSeg  <. <. Q ,  A >. ,  <. X ,  X >. >. 
<->  ( ( A  Btwn  <. Q ,  X >.  /\  A  Btwn  <. Q ,  X >. )  /\  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\ 
<. A ,  X >.Cgr <. A ,  X >. )  /\  ( <. Q ,  Y >.Cgr <. Q ,  X >.  /\  <. A ,  Y >.Cgr
<. A ,  X >. ) ) ) )
3933, 34, 35, 36, 37, 34, 35, 36, 36, 38syl333anc 1219 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  ( <. <. Q ,  A >. ,  <. X ,  Y >. >. 
OuterFiveSeg  <. <. Q ,  A >. ,  <. X ,  X >. >. 
<->  ( ( A  Btwn  <. Q ,  X >.  /\  A  Btwn  <. Q ,  X >. )  /\  ( <. Q ,  A >.Cgr <. Q ,  A >.  /\ 
<. A ,  X >.Cgr <. A ,  X >. )  /\  ( <. Q ,  Y >.Cgr <. Q ,  X >.  /\  <. A ,  Y >.Cgr
<. A ,  X >. ) ) ) )
4032, 39sylibrd 227 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  <. <. Q ,  A >. ,  <. X ,  Y >. >. 
OuterFiveSeg  <. <. Q ,  A >. ,  <. X ,  X >. >. ) )
41 simp1 960 . . . 4  |-  ( ( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  Q  =/=  A )
4241a1i 12 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  Q  =/=  A ) )
4340, 42jcad 521 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  ( <. <. Q ,  A >. , 
<. X ,  Y >. >.  OuterFiveSeg  <. <. Q ,  A >. , 
<. X ,  X >. >.  /\  Q  =/=  A
) ) )
44 5segofs 23803 . . 3  |-  ( ( ( N  e.  NN  /\  Q  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  X  e.  ( EE `  N ) ) )  ->  (
( <. <. Q ,  A >. ,  <. X ,  Y >. >. 
OuterFiveSeg  <. <. Q ,  A >. ,  <. X ,  X >. >.  /\  Q  =/=  A )  ->  <. X ,  Y >.Cgr <. X ,  X >. ) )
4533, 34, 35, 36, 37, 34, 35, 36, 36, 44syl333anc 1219 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( <. <. Q ,  A >. ,  <. X ,  Y >. >. 
OuterFiveSeg  <. <. Q ,  A >. ,  <. X ,  X >. >.  /\  Q  =/=  A )  ->  <. X ,  Y >.Cgr <. X ,  X >. ) )
46 axcgrid 23718 . . 3  |-  ( ( N  e.  NN  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N )  /\  X  e.  ( EE `  N
) ) )  -> 
( <. X ,  Y >.Cgr
<. X ,  X >.  ->  X  =  Y )
)
4733, 36, 37, 36, 46syl13anc 1189 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  ( <. X ,  Y >.Cgr <. X ,  X >.  ->  X  =  Y )
)
4843, 45, 473syld 53 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( Q  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( Q  =/=  A  /\  ( A  Btwn  <. Q ,  X >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( A 
Btwn  <. Q ,  Y >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. ) )  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   <.cop 3547   class class class wbr 3920   ` cfv 4592   NNcn 9626   EEcee 23690    Btwn cbtwn 23691  Cgrccgr 23692    OuterFiveSeg cofs 23779
This theorem is referenced by:  segconeu  23808  btwnouttr2  23819  cgrxfr  23852  btwnconn1lem2  23885
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-ee 23693  df-btwn 23694  df-cgr 23695  df-ofs 23780
  Copyright terms: Public domain W3C validator