MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Unicode version

Theorem sbth 6935
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 
A is smaller (has lower cardinality) than  B and vice-versa, then  A and  B are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6925 through sbthlem10 6934; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 6934. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
sbth  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B )

Proof of Theorem sbth
StepHypRef Expression
1 reldom 6823 . . . 4  |-  Rel  ~<_
21brrelexi 4703 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
31brrelexi 4703 . . 3  |-  ( B  ~<_  A  ->  B  e.  _V )
4 breq1 3986 . . . . . 6  |-  ( z  =  A  ->  (
z  ~<_  w  <->  A  ~<_  w ) )
5 breq2 3987 . . . . . 6  |-  ( z  =  A  ->  (
w  ~<_  z  <->  w  ~<_  A ) )
64, 5anbi12d 694 . . . . 5  |-  ( z  =  A  ->  (
( z  ~<_  w  /\  w  ~<_  z )  <->  ( A  ~<_  w  /\  w  ~<_  A ) ) )
7 breq1 3986 . . . . 5  |-  ( z  =  A  ->  (
z  ~~  w  <->  A  ~~  w ) )
86, 7imbi12d 313 . . . 4  |-  ( z  =  A  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
9 breq2 3987 . . . . . 6  |-  ( w  =  B  ->  ( A  ~<_  w  <->  A  ~<_  B ) )
10 breq1 3986 . . . . . 6  |-  ( w  =  B  ->  (
w  ~<_  A  <->  B  ~<_  A ) )
119, 10anbi12d 694 . . . . 5  |-  ( w  =  B  ->  (
( A  ~<_  w  /\  w  ~<_  A )  <->  ( A  ~<_  B  /\  B  ~<_  A ) ) )
12 breq2 3987 . . . . 5  |-  ( w  =  B  ->  ( A  ~~  w  <->  A  ~~  B ) )
1311, 12imbi12d 313 . . . 4  |-  ( w  =  B  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
14 vex 2760 . . . . 5  |-  z  e. 
_V
15 sseq1 3160 . . . . . . 7  |-  ( y  =  x  ->  (
y  C_  z  <->  x  C_  z
) )
16 imaeq2 4982 . . . . . . . . . 10  |-  ( y  =  x  ->  (
f " y )  =  ( f "
x ) )
1716difeq2d 3255 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  \  ( f " y ) )  =  ( w  \ 
( f " x
) ) )
1817imaeq2d 4986 . . . . . . . 8  |-  ( y  =  x  ->  (
g " ( w 
\  ( f "
y ) ) )  =  ( g "
( w  \  (
f " x ) ) ) )
19 difeq2 3249 . . . . . . . 8  |-  ( y  =  x  ->  (
z  \  y )  =  ( z  \  x ) )
2018, 19sseq12d 3168 . . . . . . 7  |-  ( y  =  x  ->  (
( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y )  <->  ( g " ( w  \ 
( f " x
) ) )  C_  ( z  \  x
) ) )
2115, 20anbi12d 694 . . . . . 6  |-  ( y  =  x  ->  (
( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) )  <-> 
( x  C_  z  /\  ( g " (
w  \  ( f " x ) ) )  C_  ( z  \  x ) ) ) )
2221cbvabv 2375 . . . . 5  |-  { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) }  =  {
x  |  ( x 
C_  z  /\  (
g " ( w 
\  ( f "
x ) ) ) 
C_  ( z  \  x ) ) }
23 eqid 2256 . . . . 5  |-  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) } )  u.  ( `' g  |`  ( z  \  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )  =  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } )  u.  ( `' g  |`  ( z 
\  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )
24 vex 2760 . . . . 5  |-  w  e. 
_V
2514, 22, 23, 24sbthlem10 6934 . . . 4  |-  ( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w )
268, 13, 25vtocl2g 2815 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B
) )
272, 3, 26syl2an 465 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2827pm2.43i 45 1  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2242   _Vcvv 2757    \ cdif 3110    u. cun 3111    C_ wss 3113   U.cuni 3787   class class class wbr 3983   `'ccnv 4646    |` cres 4649   "cima 4650    ~~ cen 6814    ~<_ cdom 6815
This theorem is referenced by:  sbthb  6936  sdomnsym  6940  domtriord  6961  xpen  6978  limenpsi  6990  php  6999  onomeneq  7004  unbnn  7067  infxpenlem  7595  fseqen  7608  infpwfien  7643  inffien  7644  alephdom  7662  mappwen  7693  infcdaabs  7786  infunabs  7787  infcda  7788  infdif  7789  infxpabs  7792  infmap2  7798  gchhar  8247  gchaleph  8251  inttsk  8350  inar1  8351  xpnnenOLD  12436  znnen  12439  qnnen  12440  rpnnen  12453  rexpen  12454  mreexfidimd  13500  acsinfdimd  14233  fislw  14884  opnreen  18284  ovolctb2  18799  vitali  18916  aannenlem3  19658  basellem4  20269  lgsqrlem4  20531  umgraex  23233  sndw  24452  pellexlem4  26270  pellexlem5  26271  idomsubgmo  26867
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-en 6818  df-dom 6819
  Copyright terms: Public domain W3C validator