Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2 Unicode version

Theorem sbco2 1980
 Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1
Assertion
Ref Expression
sbco2

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . . . . 6
21sbid2 1978 . . . . 5
3 sbequ 1952 . . . . 5
42, 3syl5bbr 252 . . . 4
5 sbequ12 1892 . . . 4
64, 5bitr3d 248 . . 3
76a4s 1700 . 2
8 nfnae 1846 . . . 4
91nfs1 1921 . . . . 5
109nfsb4 1973 . . . 4
114a1i 12 . . . 4
128, 10, 11sbied 1908 . . 3
1312bicomd 194 . 2
147, 13pm2.61i 158 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wb 178  wal 1532  wnf 1539   wceq 1619  wsb 1882 This theorem is referenced by:  sbco2d  1981  equsb3  2062  elsb3  2063  elsb4  2064  dfsb7  2079  sb7f  2080  2eu6  2198  eqsb3  2350  clelsb3  2351  sbralie  2716  sbcco  2943 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883
 Copyright terms: Public domain W3C validator