Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimdv Unicode version

Theorem sbcimdv 2982
 Description: Substitution analog of Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 11-Nov-2005.)
Hypothesis
Ref Expression
sbcimdv.1
Assertion
Ref Expression
sbcimdv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem sbcimdv
StepHypRef Expression
1 sbcimdv.1 . . . . 5
21alrimiv 2012 . . . 4
3 a4sbc 2933 . . . 4
42, 3syl5 30 . . 3
5 sbcimg 2962 . . 3
64, 5sylibd 207 . 2
76impcom 421 1
 Colors of variables: wff set class Syntax hints:   wi 6   wa 360  wal 1532   wcel 1621  wsbc 2921 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-sbc 2922
 Copyright terms: Public domain W3C validator