Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sb5ALTVD Unicode version

Theorem sb5ALTVD 27379
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 1993, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 26981 is sb5ALTVD 27379 without virtual deductions and was automatically derived from sb5ALTVD 27379.
 1:: 2:: 3:1,2: 4:3: 5:4: 6:: 7:: 8:7: 9:7: 10:8,9: 101:: 11:101,10: 12:5,11: qed:12:
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5ALTVD
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem sb5ALTVD
StepHypRef Expression
1 idn1 27035 . . . . . 6
2 equsb1 1906 . . . . . 6
3 sban 1961 . . . . . . 7
43simplbi2com 1370 . . . . . 6
51, 2, 4e10 27157 . . . . 5
6 a4sbe 1967 . . . . 5
75, 6e1_ 27089 . . . 4
87in1 27032 . . 3
9 hbs1 2065 . . . 4
10 idn2 27075 . . . . . 6
11 simpr 449 . . . . . 6
1210, 11e2 27093 . . . . 5
13 simpl 445 . . . . . 6
1410, 13e2 27093 . . . . 5
15 sbequ1 1889 . . . . . 6
1615com12 29 . . . . 5
1712, 14, 16e22 27133 . . . 4
189, 17exinst 27086 . . 3
198, 18pm3.2i 443 . 2
20 bi3 181 . . 3
2120imp 420 . 2
2219, 21e0_ 27237 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178   wa 360  wex 1537   wceq 1619  wsb 1882 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-vd1 27031  df-vd2 27040
 Copyright terms: Public domain W3C validator