MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Unicode version

Theorem rlimdiv 11996
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
rlimadd.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
rlimadd.5  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
rlimadd.6  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
rlimdiv.7  |-  ( ph  ->  E  =/=  0 )
rlimdiv.8  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
Assertion
Ref Expression
rlimdiv  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Distinct variable groups:    x, A    x, D    ph, x    x, E
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem rlimdiv
StepHypRef Expression
1 rlimadd.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 rlimadd.5 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  ~~> r  D
)
31, 2rlimmptrcl 11958 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4 rlimadd.4 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
5 rlimadd.6 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  ~~> r  E
)
64, 5rlimmptrcl 11958 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
7 rlimdiv.8 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  C  =/=  0 )
86, 7reccld 9409 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
1  /  C )  e.  CC )
9 eldifsn 3653 . . . . . . 7  |-  ( C  e.  ( CC  \  { 0 } )  <-> 
( C  e.  CC  /\  C  =/=  0 ) )
106, 7, 9sylanbrc 648 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  ( CC  \  {
0 } ) )
11 eqid 2253 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1210, 11fmptd 5536 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> ( CC  \  { 0 } ) )
13 rlimcl 11854 . . . . . . 7  |-  ( ( x  e.  A  |->  C )  ~~> r  E  ->  E  e.  CC )
145, 13syl 17 . . . . . 6  |-  ( ph  ->  E  e.  CC )
15 rlimdiv.7 . . . . . 6  |-  ( ph  ->  E  =/=  0 )
16 eldifsn 3653 . . . . . 6  |-  ( E  e.  ( CC  \  { 0 } )  <-> 
( E  e.  CC  /\  E  =/=  0 ) )
1714, 15, 16sylanbrc 648 . . . . 5  |-  ( ph  ->  E  e.  ( CC 
\  { 0 } ) )
18 eldifsn 3653 . . . . . . . 8  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
19 reccl 9311 . . . . . . . 8  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  CC )
2018, 19sylbi 189 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( 1  / 
y )  e.  CC )
2120adantl 454 . . . . . 6  |-  ( (
ph  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  y
)  e.  CC )
22 eqid 2253 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) )
2321, 22fmptd 5536 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) : ( CC  \  { 0 } ) --> CC )
24 eqid 2253 . . . . . . . 8  |-  ( if ( 1  <_  (
( abs `  E
)  x.  z ) ,  1 ,  ( ( abs `  E
)  x.  z ) )  x.  ( ( abs `  E )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  E )  x.  z ) ,  1 ,  ( ( abs `  E )  x.  z
) )  x.  (
( abs `  E
)  /  2 ) )
2524reccn2 11947 . . . . . . 7  |-  ( ( E  e.  ( CC 
\  { 0 } )  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
2617, 25sylan 459 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
27 oveq2 5718 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
1  /  y )  =  ( 1  / 
v ) )
28 ovex 5735 . . . . . . . . . . . . . 14  |-  ( 1  /  v )  e. 
_V
2927, 22, 28fvmpt 5454 . . . . . . . . . . . . 13  |-  ( v  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  =  ( 1  /  v ) )
30 oveq2 5718 . . . . . . . . . . . . . . 15  |-  ( y  =  E  ->  (
1  /  y )  =  ( 1  /  E ) )
31 ovex 5735 . . . . . . . . . . . . . . 15  |-  ( 1  /  E )  e. 
_V
3230, 22, 31fvmpt 5454 . . . . . . . . . . . . . 14  |-  ( E  e.  ( CC  \  { 0 } )  ->  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
)  =  ( 1  /  E ) )
3317, 32syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  E )  =  ( 1  /  E ) )
3429, 33oveqan12rd 5730 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  v
)  -  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )  =  ( ( 1  / 
v )  -  (
1  /  E ) ) )
3534fveq2d 5381 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  =  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) ) )
3635breq1d 3930 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z  <->  ( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )
3736imbi2d 309 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( CC  \  { 0 } ) )  -> 
( ( ( abs `  ( v  -  E
) )  <  w  ->  ( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  ( ( abs `  ( v  -  E ) )  < 
w  ->  ( abs `  ( ( 1  / 
v )  -  (
1  /  E ) ) )  <  z
) ) )
3837ralbidva 2523 . . . . . . . 8  |-  ( ph  ->  ( A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z )  <->  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
3938rexbidv 2528 . . . . . . 7  |-  ( ph  ->  ( E. w  e.  RR+  A. v  e.  ( CC  \  { 0 } ) ( ( abs `  ( v  -  E ) )  <  w  ->  ( abs `  ( ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  v )  -  (
( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) `
 E ) ) )  <  z )  <->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) ) )
4039biimpar 473 . . . . . 6  |-  ( (
ph  /\  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( 1  /  v
)  -  ( 1  /  E ) ) )  <  z ) )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4126, 40syldan 458 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  ( CC  \  {
0 } ) ( ( abs `  (
v  -  E ) )  <  w  -> 
( abs `  (
( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) `  v )  -  ( ( y  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  y
) ) `  E
) ) )  < 
z ) )
4212, 17, 5, 23, 41rlimcn1 11939 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  ~~> r  ( ( y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) `  E ) )
43 eqidd 2254 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C ) )
44 eqidd 2254 . . . . 5  |-  ( ph  ->  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )
45 oveq2 5718 . . . . 5  |-  ( y  =  C  ->  (
1  /  y )  =  ( 1  /  C ) )
4610, 43, 44, 45fmptco 5543 . . . 4  |-  ( ph  ->  ( ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) )  o.  ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( 1  /  C ) ) )
4742, 46, 333brtr3d 3949 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( 1  /  C
) )  ~~> r  ( 1  /  E ) )
483, 8, 2, 47rlimmul 11995 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  x.  (
1  /  C ) ) )  ~~> r  ( D  x.  ( 1  /  E ) ) )
493, 6, 7divrecd 9419 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
5049mpteq2dva 4003 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  =  ( x  e.  A  |->  ( B  x.  ( 1  /  C ) ) ) )
51 rlimcl 11854 . . . 4  |-  ( ( x  e.  A  |->  B )  ~~> r  D  ->  D  e.  CC )
522, 51syl 17 . . 3  |-  ( ph  ->  D  e.  CC )
5352, 14, 15divrecd 9419 . 2  |-  ( ph  ->  ( D  /  E
)  =  ( D  x.  ( 1  /  E ) ) )
5448, 50, 533brtr4d 3950 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  /  C
) )  ~~> r  ( D  /  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    \ cdif 3075   ifcif 3470   {csn 3544   class class class wbr 3920    e. cmpt 3974    o. ccom 4584   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   2c2 9675   RR+crp 10233   abscabs 11596    ~~> r crli 11836
This theorem is referenced by:  logexprlim  20296  chebbnd2  20458  chto1lb  20459  pnt2  20594  pnt  20595
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-rlim 11840
  Copyright terms: Public domain W3C validator