MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp Unicode version

Theorem rlimcnp 20092
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function  S ( y )  =  R ( 1  /  y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp.a  |-  ( ph  ->  A  C_  ( 0 [,)  +oo ) )
rlimcnp.0  |-  ( ph  ->  0  e.  A )
rlimcnp.b  |-  ( ph  ->  B  C_  RR+ )
rlimcnp.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
rlimcnp.d  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
rlimcnp.c  |-  ( x  =  0  ->  R  =  C )
rlimcnp.s  |-  ( x  =  ( 1  / 
y )  ->  R  =  S )
rlimcnp.j  |-  J  =  ( TopOpen ` fld )
rlimcnp.k  |-  K  =  ( Jt  A )
Assertion
Ref Expression
rlimcnp  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `
 0 ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    ph, x, y   
y, R    x, S
Allowed substitution hints:    R( x)    S( y)    J( x, y)    K( x, y)

Proof of Theorem rlimcnp
StepHypRef Expression
1 rpreccl 10256 . . . . . . . . 9  |-  ( r  e.  RR+  ->  ( 1  /  r )  e.  RR+ )
21adantl 454 . . . . . . . 8  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR+ )
3 rpreccl 10256 . . . . . . . . . 10  |-  ( t  e.  RR+  ->  ( 1  /  t )  e.  RR+ )
43adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  t )  e.  RR+ )
5 rpcnne0 10250 . . . . . . . . . . . 12  |-  ( t  e.  RR+  ->  ( t  e.  CC  /\  t  =/=  0 ) )
65adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( t  e.  CC  /\  t  =/=  0 ) )
7 recrec 9337 . . . . . . . . . . 11  |-  ( ( t  e.  CC  /\  t  =/=  0 )  -> 
( 1  /  (
1  /  t ) )  =  t )
86, 7syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( 1  /  ( 1  / 
t ) )  =  t )
98eqcomd 2258 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR+ )  ->  t  =  ( 1  /  (
1  /  t ) ) )
10 oveq2 5718 . . . . . . . . . . 11  |-  ( r  =  ( 1  / 
t )  ->  (
1  /  r )  =  ( 1  / 
( 1  /  t
) ) )
1110eqeq2d 2264 . . . . . . . . . 10  |-  ( r  =  ( 1  / 
t )  ->  (
t  =  ( 1  /  r )  <->  t  =  ( 1  /  (
1  /  t ) ) ) )
1211rcla4ev 2821 . . . . . . . . 9  |-  ( ( ( 1  /  t
)  e.  RR+  /\  t  =  ( 1  / 
( 1  /  t
) ) )  ->  E. r  e.  RR+  t  =  ( 1  / 
r ) )
134, 9, 12syl2anc 645 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  E. r  e.  RR+  t  =  ( 1  /  r ) )
14 simpr 449 . . . . . . . . . . 11  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  t  =  ( 1  / 
r ) )
1514breq1d 3930 . . . . . . . . . 10  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  (
t  <  y  <->  ( 1  /  r )  < 
y ) )
1615imbi1d 310 . . . . . . . . 9  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  (
( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
1716ralbidv 2527 . . . . . . . 8  |-  ( (
ph  /\  t  =  ( 1  /  r
) )  ->  ( A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
182, 13, 17rexxfrd 4440 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  E. r  e.  RR+  A. y  e.  B  ( (
1  /  r )  <  y  ->  ( abs `  ( S  -  C ) )  < 
z ) ) )
1918adantr 453 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  <->  E. r  e.  RR+  A. y  e.  B  ( ( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
20 simplr 734 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  r  e.  RR+ )
21 rlimcnp.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  C_  RR+ )
2221sselda 3103 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  RR+ )
2322adantlr 698 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  y  e.  RR+ )
24 elrp 10235 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  <->  ( r  e.  RR  /\  0  < 
r ) )
25 elrp 10235 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  <->  ( y  e.  RR  /\  0  < 
y ) )
26 ltrec1 9523 . . . . . . . . . . . . . 14  |-  ( ( ( r  e.  RR  /\  0  <  r )  /\  ( y  e.  RR  /\  0  < 
y ) )  -> 
( ( 1  / 
r )  <  y  <->  ( 1  /  y )  <  r ) )
2724, 25, 26syl2anb 467 . . . . . . . . . . . . 13  |-  ( ( r  e.  RR+  /\  y  e.  RR+ )  ->  (
( 1  /  r
)  <  y  <->  ( 1  /  y )  < 
r ) )
2820, 23, 27syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  (
( 1  /  r
)  <  y  <->  ( 1  /  y )  < 
r ) )
2928imbi1d 310 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  B )  ->  (
( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
3029ralbidva 2523 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( A. y  e.  B  (
( 1  /  r
)  <  y  ->  ( abs `  ( S  -  C ) )  <  z )  <->  A. y  e.  B  ( (
1  /  y )  <  r  ->  ( abs `  ( S  -  C ) )  < 
z ) ) )
3130adantlr 698 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
32 rpcn 10241 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  e.  CC )
33 rpne0 10248 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  =/=  0 )
3432, 33recrecd 9413 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  ( 1  / 
y ) )  =  y )
3522, 34syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  ( 1  /  y ) )  =  y )
36 simpr 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
3735, 36eqeltrd 2327 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  ( 1  /  y ) )  e.  B )
38 rpreccl 10256 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( 1  /  y )  e.  RR+ )
3922, 38syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  RR+ )
40 rlimcnp.d . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
4140ralrimiva 2588 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B ) )
4241adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B
) )
43 eleq1 2313 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  (
x  e.  A  <->  ( 1  /  y )  e.  A ) )
44 oveq2 5718 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( 1  / 
y )  ->  (
1  /  x )  =  ( 1  / 
( 1  /  y
) ) )
4544eleq1d 2319 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  (
( 1  /  x
)  e.  B  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) )
4643, 45bibi12d 314 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1  / 
y )  ->  (
( x  e.  A  <->  ( 1  /  x )  e.  B )  <->  ( (
1  /  y )  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) ) )
4746rcla4v 2817 . . . . . . . . . . . . . 14  |-  ( ( 1  /  y )  e.  RR+  ->  ( A. x  e.  RR+  ( x  e.  A  <->  ( 1  /  x )  e.  B )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) ) )
4839, 42, 47sylc 58 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  (
( 1  /  y
)  e.  A  <->  ( 1  /  ( 1  / 
y ) )  e.  B ) )
4937, 48mpbird 225 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  A )
5039rpne0d 10274 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  =/=  0 )
51 eldifsn 3653 . . . . . . . . . . . 12  |-  ( ( 1  /  y )  e.  ( A  \  { 0 } )  <-> 
( ( 1  / 
y )  e.  A  /\  ( 1  /  y
)  =/=  0 ) )
5249, 50, 51sylanbrc 648 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  B )  ->  (
1  /  y )  e.  ( A  \  { 0 } ) )
53 eldifi 3215 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  \  { 0 } )  ->  x  e.  A
)
5453adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  A )
55 0re 8718 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
56 pnfxr 10334 . . . . . . . . . . . . . . . . 17  |-  +oo  e.  RR*
57 icossre 10608 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
5855, 56, 57mp2an 656 . . . . . . . . . . . . . . . 16  |-  ( 0 [,)  +oo )  C_  RR
59 difss 3220 . . . . . . . . . . . . . . . . . 18  |-  ( A 
\  { 0 } )  C_  A
60 rlimcnp.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  C_  ( 0 [,)  +oo ) )
6159, 60syl5ss 3111 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  \  {
0 } )  C_  ( 0 [,)  +oo ) )
6261sselda 3103 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  ( 0 [,)  +oo ) )
6358, 62sseldi 3101 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  RR )
64 elico2 10592 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
x  e.  ( 0 [,)  +oo )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  +oo ) ) )
6555, 56, 64mp2an 656 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 0 [,) 
+oo )  <->  ( x  e.  RR  /\  0  <_  x  /\  x  <  +oo ) )
6665simp2bi 976 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 0 [,) 
+oo )  ->  0  <_  x )
6762, 66syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
0  <_  x )
68 eldifsni 3654 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( A  \  { 0 } )  ->  x  =/=  0
)
6968adantl 454 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  =/=  0 )
7063, 67, 69ne0gt0d 8836 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
0  <  x )
7163, 70elrpd 10267 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  e.  RR+ )
7271, 40syldan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( x  e.  A  <->  ( 1  /  x )  e.  B ) )
7354, 72mpbid 203 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( 1  /  x
)  e.  B )
74 rpcn 10241 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  CC )
75 rpne0 10248 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  =/=  0 )
7674, 75recrecd 9413 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( 1  /  ( 1  /  x ) )  =  x )
7771, 76syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  -> 
( 1  /  (
1  /  x ) )  =  x )
7877eqcomd 2258 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  x  =  ( 1  /  ( 1  /  x ) ) )
79 oveq2 5718 . . . . . . . . . . . . . 14  |-  ( y  =  ( 1  /  x )  ->  (
1  /  y )  =  ( 1  / 
( 1  /  x
) ) )
8079eqeq2d 2264 . . . . . . . . . . . . 13  |-  ( y  =  ( 1  /  x )  ->  (
x  =  ( 1  /  y )  <->  x  =  ( 1  /  (
1  /  x ) ) ) )
8180rcla4ev 2821 . . . . . . . . . . . 12  |-  ( ( ( 1  /  x
)  e.  B  /\  x  =  ( 1  /  ( 1  /  x ) ) )  ->  E. y  e.  B  x  =  ( 1  /  y ) )
8273, 78, 81syl2anc 645 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  { 0 } ) )  ->  E. y  e.  B  x  =  ( 1  /  y ) )
83 breq1 3923 . . . . . . . . . . . . 13  |-  ( x  =  ( 1  / 
y )  ->  (
x  <  r  <->  ( 1  /  y )  < 
r ) )
84 rlimcnp.s . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1  / 
y )  ->  R  =  S )
8584oveq1d 5725 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1  / 
y )  ->  ( R  -  C )  =  ( S  -  C ) )
8685fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( x  =  ( 1  / 
y )  ->  ( abs `  ( R  -  C ) )  =  ( abs `  ( S  -  C )
) )
8786breq1d 3930 . . . . . . . . . . . . 13  |-  ( x  =  ( 1  / 
y )  ->  (
( abs `  ( R  -  C )
)  <  z  <->  ( abs `  ( S  -  C
) )  <  z
) )
8883, 87imbi12d 313 . . . . . . . . . . . 12  |-  ( x  =  ( 1  / 
y )  ->  (
( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
8988adantl 454 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  ( 1  /  y
) )  ->  (
( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
9052, 82, 89ralxfrd 4439 . . . . . . . . . 10  |-  ( ph  ->  ( A. x  e.  ( A  \  {
0 } ) ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )  <->  A. y  e.  B  ( ( 1  /  y
)  <  r  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
9190ad2antrr 709 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  A. y  e.  B  ( ( 1  / 
y )  <  r  ->  ( abs `  ( S  -  C )
)  <  z )
) )
9231, 91bitr4d 249 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. x  e.  ( A 
\  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
93 elsni 3568 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  { 0 }  ->  x  =  0 )
9493adantl 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  x  =  0 )
95 rlimcnp.c . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  0  ->  R  =  C )
9694, 95syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  R  =  C )
9796oveq1d 5725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( R  -  C )  =  ( C  -  C ) )
98 rlimcnp.0 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  0  e.  A )
99 rlimcnp.r . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  CC )
10099ralrimiva 2588 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. x  e.  A  R  e.  CC )
10195eleq1d 2319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  0  ->  ( R  e.  CC  <->  C  e.  CC ) )
102101rcla4v 2817 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  e.  A  ->  ( A. x  e.  A  R  e.  CC  ->  C  e.  CC ) )
10398, 100, 102sylc 58 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  C  e.  CC )
104103subidd 9025 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( C  -  C
)  =  0 )
105104ad2antrr 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( C  -  C )  =  0 )
10697, 105eqtrd 2285 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( R  -  C )  =  0 )
107106fveq2d 5381 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  =  ( abs `  0 ) )
108 abs0 11647 . . . . . . . . . . . . . . 15  |-  ( abs `  0 )  =  0
109107, 108syl6eq 2301 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  =  0 )
110 rpgt0 10244 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR+  ->  0  < 
z )
111110ad2antlr 710 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  0  <  z
)
112109, 111eqbrtrd 3940 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( abs `  ( R  -  C )
)  <  z )
113112a1d 24 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  x  e.  { 0 } )  ->  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) )
114113ralrimiva 2588 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  RR+ )  ->  A. x  e.  { 0 }  (
x  <  r  ->  ( abs `  ( R  -  C ) )  <  z ) )
115114adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  A. x  e.  { 0 }  (
x  <  r  ->  ( abs `  ( R  -  C ) )  <  z ) )
116115biantrud 495 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  ( A. x  e.  ( A  \  {
0 } ) ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )  /\  A. x  e.  {
0 }  ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z ) ) ) )
117 ralunb 3264 . . . . . . . . 9  |-  ( A. x  e.  ( ( A  \  { 0 } )  u.  { 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z )  <->  ( A. x  e.  ( A  \  { 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  /\  A. x  e.  {
0 }  ( x  <  r  ->  ( abs `  ( R  -  C ) )  < 
z ) ) )
118116, 117syl6bbr 256 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  ( A  \  { 0 } ) ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
)  <->  A. x  e.  ( ( A  \  {
0 } )  u. 
{ 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )
) )
119 undif1 3435 . . . . . . . . . 10  |-  ( ( A  \  { 0 } )  u.  {
0 } )  =  ( A  u.  {
0 } )
12098ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  0  e.  A )
121120snssd 3660 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  { 0 }  C_  A )
122 ssequn2 3258 . . . . . . . . . . 11  |-  ( { 0 }  C_  A  <->  ( A  u.  { 0 } )  =  A )
123121, 122sylib 190 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A  u.  { 0 } )  =  A )
124119, 123syl5eq 2297 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  (
( A  \  {
0 } )  u. 
{ 0 } )  =  A )
125124raleqdv 2694 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. x  e.  (
( A  \  {
0 } )  u. 
{ 0 } ) ( x  <  r  ->  ( abs `  ( R  -  C )
)  <  z )  <->  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
12692, 118, 1253bitrd 272 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  RR+ )  /\  r  e.  RR+ )  ->  ( A. y  e.  B  ( ( 1  / 
r )  <  y  ->  ( abs `  ( S  -  C )
)  <  z )  <->  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
127126rexbidva 2524 . . . . . 6  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. r  e.  RR+  A. y  e.  B  ( (
1  /  r )  <  y  ->  ( abs `  ( S  -  C ) )  < 
z )  <->  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
12819, 127bitrd 246 . . . . 5  |-  ( (
ph  /\  z  e.  RR+ )  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  <->  E. r  e.  RR+  A. x  e.  A  ( x  <  r  -> 
( abs `  ( R  -  C )
)  <  z )
) )
129128ralbidva 2523 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  <->  A. z  e.  RR+  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
130 nfv 1629 . . . . . . . . 9  |-  F/ x
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r
131 nfmpt1 4006 . . . . . . . . . . . 12  |-  F/_ x
( x  e.  A  |->  R )
132 nfcv 2385 . . . . . . . . . . . 12  |-  F/_ x w
133131, 132nffv 5384 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  A  |->  R ) `  w )
134 nfcv 2385 . . . . . . . . . . 11  |-  F/_ x
( abs  o.  -  )
135 nfcv 2385 . . . . . . . . . . . 12  |-  F/_ x
0
136131, 135nffv 5384 . . . . . . . . . . 11  |-  F/_ x
( ( x  e.  A  |->  R ) ` 
0 )
137133, 134, 136nfov 5733 . . . . . . . . . 10  |-  F/_ x
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )
138 nfcv 2385 . . . . . . . . . 10  |-  F/_ x  <
139 nfcv 2385 . . . . . . . . . 10  |-  F/_ x
z
140137, 138, 139nfbr 3964 . . . . . . . . 9  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z
141130, 140nfim 1735 . . . . . . . 8  |-  F/ x
( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )
142 nfv 1629 . . . . . . . 8  |-  F/ w
( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )
143 oveq1 5717 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 ) )
144143breq1d 3930 . . . . . . . . 9  |-  ( w  =  x  ->  (
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  <->  ( x
( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r
) )
145 fveq2 5377 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
( x  e.  A  |->  R ) `  w
)  =  ( ( x  e.  A  |->  R ) `  x ) )
146145oveq1d 5725 . . . . . . . . . 10  |-  ( w  =  x  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( ( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) ) )
147146breq1d 3930 . . . . . . . . 9  |-  ( w  =  x  ->  (
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z  <->  ( ( ( x  e.  A  |->  R ) `  x ) ( abs  o.  -  ) ( ( x  e.  A  |->  R ) `
 0 ) )  <  z ) )
148144, 147imbi12d 313 . . . . . . . 8  |-  ( w  =  x  ->  (
( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  ( (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) )
149141, 142, 148cbvral 2705 . . . . . . 7  |-  ( A. w  e.  A  (
( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  A. x  e.  A  ( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) )
150 simpr 449 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
15198adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  A )
152150, 151ovresd 5840 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( x ( abs  o.  -  ) 0 ) )
15360, 58syl6ss 3112 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
154 ax-resscn 8674 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
155153, 154syl6ss 3112 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  CC )
156155sselda 3103 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  CC )
157155adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  A  C_  CC )
158157, 151sseldd 3104 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  e.  CC )
159 eqid 2253 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
160159cnmetdval 18112 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  0  e.  CC )  ->  ( x ( abs 
o.  -  ) 0 )  =  ( abs `  ( x  -  0 ) ) )
161156, 158, 160syl2anc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( abs  o.  -  ) 0 )  =  ( abs `  (
x  -  0 ) ) )
162156subid1d 9026 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
x  -  0 )  =  x )
163162fveq2d 5381 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
164152, 161, 1633eqtrd 2289 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  ( abs `  x ) )
165153sselda 3103 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
16660sselda 3103 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ( 0 [,)  +oo ) )
167166, 66syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  x )
168165, 167absidd 11782 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  x )  =  x )
169164, 168eqtrd 2285 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
x ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) 0 )  =  x )
170169breq1d 3930 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  <->  x  <  r ) )
171 eqid 2253 . . . . . . . . . . . . . 14  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
172171fvmpt2 5460 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  R  e.  CC )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
173150, 99, 172syl2anc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
174103adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
17595, 171fvmptg 5452 . . . . . . . . . . . . 13  |-  ( ( 0  e.  A  /\  C  e.  CC )  ->  ( ( x  e.  A  |->  R ) ` 
0 )  =  C )
176151, 174, 175syl2anc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  0
)  =  C )
177173, 176oveq12d 5728 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( R ( abs  o.  -  ) C ) )
178159cnmetdval 18112 . . . . . . . . . . . 12  |-  ( ( R  e.  CC  /\  C  e.  CC )  ->  ( R ( abs 
o.  -  ) C
)  =  ( abs `  ( R  -  C
) ) )
17999, 174, 178syl2anc 645 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( abs  o.  -  ) C )  =  ( abs `  ( R  -  C )
) )
180177, 179eqtrd 2285 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  =  ( abs `  ( R  -  C ) ) )
181180breq1d 3930 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z  <->  ( abs `  ( R  -  C )
)  <  z )
)
182170, 181imbi12d 313 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
183182ralbidva 2523 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  A  ( ( x ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 x ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
184149, 183syl5bb 250 . . . . . 6  |-  ( ph  ->  ( A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
185184rexbidv 2528 . . . . 5  |-  ( ph  ->  ( E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  -> 
( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z )  <->  E. r  e.  RR+  A. x  e.  A  ( x  < 
r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
186185ralbidv 2527 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  A. z  e.  RR+  E. r  e.  RR+  A. x  e.  A  ( x  <  r  ->  ( abs `  ( R  -  C
) )  <  z
) ) )
18799, 171fmptd 5536 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> CC )
188187biantrurd 496 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
)  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
189129, 186, 1883bitr2d 274 . . 3  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A
) ) 0 )  <  r  ->  (
( ( x  e.  A  |->  R ) `  w ) ( abs 
o.  -  ) (
( x  e.  A  |->  R ) `  0
) )  <  z
) ) ) )
190100adantr 453 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  A. x  e.  A  R  e.  CC )
19184eleq1d 2319 . . . . . . . . 9  |-  ( x  =  ( 1  / 
y )  ->  ( R  e.  CC  <->  S  e.  CC ) )
192191rcla4v 2817 . . . . . . . 8  |-  ( ( 1  /  y )  e.  A  ->  ( A. x  e.  A  R  e.  CC  ->  S  e.  CC ) )
19349, 190, 192sylc 58 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  S  e.  CC )
194193ralrimiva 2588 . . . . . 6  |-  ( ph  ->  A. y  e.  B  S  e.  CC )
195 rpssre 10243 . . . . . . 7  |-  RR+  C_  RR
19621, 195syl6ss 3112 . . . . . 6  |-  ( ph  ->  B  C_  RR )
197 1re 8717 . . . . . . 7  |-  1  e.  RR
198197a1i 12 . . . . . 6  |-  ( ph  ->  1  e.  RR )
199194, 196, 103, 198rlim3 11849 . . . . 5  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  ( 1 [,)  +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
200 0xr 8758 . . . . . . . . . 10  |-  0  e.  RR*
201 0lt1 9176 . . . . . . . . . 10  |-  0  <  1
202 df-ioo 10538 . . . . . . . . . . 11  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
203 df-ico 10540 . . . . . . . . . . 11  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
204 xrltletr 10367 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
205202, 203, 204ixxss1 10552 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,)  +oo )  C_  ( 0 (,)  +oo ) )
206200, 201, 205mp2an 656 . . . . . . . . 9  |-  ( 1 [,)  +oo )  C_  (
0 (,)  +oo )
207 ioorp 10605 . . . . . . . . 9  |-  ( 0 (,)  +oo )  =  RR+
208206, 207sseqtri 3131 . . . . . . . 8  |-  ( 1 [,)  +oo )  C_  RR+
209 ssrexv 3159 . . . . . . . 8  |-  ( ( 1 [,)  +oo )  C_  RR+  ->  ( E. t  e.  ( 1 [,)  +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z ) ) )
210208, 209ax-mp 10 . . . . . . 7  |-  ( E. t  e.  ( 1 [,)  +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR+  A. y  e.  B  ( t  <_ 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
211 simplr 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  t  e.  RR+ )
212195, 211sseldi 3101 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  t  e.  RR )
213196adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  RR+ )  ->  B  C_  RR )
214213sselda 3103 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  y  e.  RR )
215 ltle 8790 . . . . . . . . . . 11  |-  ( ( t  e.  RR  /\  y  e.  RR )  ->  ( t  <  y  ->  t  <_  y )
)
216212, 214, 215syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  (
t  <  y  ->  t  <_  y ) )
217216imim1d 71 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  RR+ )  /\  y  e.  B )  ->  (
( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
218217ralimdva 2583 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR+ )  ->  ( A. y  e.  B  (
t  <_  y  ->  ( abs `  ( S  -  C ) )  <  z )  ->  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C )
)  <  z )
) )
219218reximdva 2617 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )
) )
220210, 219syl5 30 . . . . . 6  |-  ( ph  ->  ( E. t  e.  ( 1 [,)  +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )
) )
221220ralimdv 2584 . . . . 5  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  ( 1 [,)  +oo ) A. y  e.  B  ( t  <_  y  ->  ( abs `  ( S  -  C )
)  <  z )  ->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
222199, 221sylbid 208 . . . 4  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  ->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
223 ssrexv 3159 . . . . . . 7  |-  ( RR+  C_  RR  ->  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
224195, 223ax-mp 10 . . . . . 6  |-  ( E. t  e.  RR+  A. y  e.  B  ( t  <  y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
225224ralimi 2580 . . . . 5  |-  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
)  ->  A. z  e.  RR+  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) )
226194, 196, 103rlim2lt 11848 . . . . 5  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  RR  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
227225, 226syl5ibr 214 . . . 4  |-  ( ph  ->  ( A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  <  y  -> 
( abs `  ( S  -  C )
)  <  z )  ->  ( y  e.  B  |->  S )  ~~> r  C
) )
228222, 227impbid 185 . . 3  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  A. z  e.  RR+  E. t  e.  RR+  A. y  e.  B  ( t  < 
y  ->  ( abs `  ( S  -  C
) )  <  z
) ) )
229 cnxmet 18114 . . . . 5  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
230 xmetres2 17757 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( * Met `  A ) )
231229, 155, 230sylancr 647 . . . 4  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( * Met `  A ) )
232229a1i 12 . . . 4  |-  ( ph  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
233 eqid 2253 . . . . 5  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )
234 rlimcnp.j . . . . . 6  |-  J  =  ( TopOpen ` fld )
235234cnfldtopn 18123 . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
236233, 235metcnp2 17920 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( * Met `  A )  /\  ( abs  o.  -  )  e.  ( * Met `  CC )  /\  0  e.  A
)  ->  ( (
x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
)  <->  ( ( x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
237231, 232, 98, 236syl3anc 1187 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) `
 0 )  <->  ( (
x  e.  A  |->  R ) : A --> CC  /\  A. z  e.  RR+  E. r  e.  RR+  A. w  e.  A  ( ( w ( ( abs  o.  -  )  |`  ( A  X.  A ) ) 0 )  <  r  ->  ( ( ( x  e.  A  |->  R ) `
 w ) ( abs  o.  -  )
( ( x  e.  A  |->  R ) ` 
0 ) )  < 
z ) ) ) )
238189, 228, 2373bitr4d 278 . 2  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
) ) )
239 rlimcnp.k . . . . . 6  |-  K  =  ( Jt  A )
240 eqid 2253 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
241240, 235, 233metrest 17902 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  A  C_  CC )  -> 
( Jt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
242229, 155, 241sylancr 647 . . . . . 6  |-  ( ph  ->  ( Jt  A )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) ) )
243239, 242syl5eq 2297 . . . . 5  |-  ( ph  ->  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( A  X.  A ) ) ) )
244243oveq1d 5725 . . . 4  |-  ( ph  ->  ( K  CnP  J
)  =  ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) )
245244fveq1d 5379 . . 3  |-  ( ph  ->  ( ( K  CnP  J ) `  0 )  =  ( ( (
MetOpen `  ( ( abs 
o.  -  )  |`  ( A  X.  A ) ) )  CnP  J ) `
 0 ) )
246245eleq2d 2320 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `  0 )  <-> 
( x  e.  A  |->  R )  e.  ( ( ( MetOpen `  (
( abs  o.  -  )  |`  ( A  X.  A
) ) )  CnP 
J ) `  0
) ) )
247238, 246bitr4d 249 1  |-  ( ph  ->  ( ( y  e.  B  |->  S )  ~~> r  C  <->  ( x  e.  A  |->  R )  e.  ( ( K  CnP  J ) `
 0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    \ cdif 3075    u. cun 3076    C_ wss 3078   {csn 3544   class class class wbr 3920    e. cmpt 3974    X. cxp 4578    |` cres 4582    o. ccom 4584   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    +oocpnf 8744   RR*cxr 8746    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   RR+crp 10233   (,)cioo 10534   [,)cico 10536   abscabs 11596    ~~> r crli 11836   ↾t crest 13199   TopOpenctopn 13200   * Metcxmt 16201   MetOpencmopn 16204  ℂfldccnfld 16209    CnP ccnp 16787
This theorem is referenced by:  rlimcnp2  20093
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-fz 10661  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-rlim 11840  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-plusg 13095  df-mulr 13096  df-starv 13097  df-tset 13101  df-ple 13102  df-ds 13104  df-rest 13201  df-topn 13202  df-topgen 13218  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-cnp 16790
  Copyright terms: Public domain W3C validator