MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucg Unicode version

Theorem rdgsucg 6322
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgsucg  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )

Proof of Theorem rdgsucg
StepHypRef Expression
1 rdgdmlim 6316 . . 3  |-  Lim  dom  rec ( F ,  A
)
2 limsuc 4531 . . 3  |-  ( Lim 
dom  rec ( F ,  A )  ->  ( B  e.  dom  rec ( F ,  A )  <->  suc 
B  e.  dom  rec ( F ,  A ) ) )
31, 2ax-mp 10 . 2  |-  ( B  e.  dom  rec ( F ,  A )  <->  suc 
B  e.  dom  rec ( F ,  A ) )
4 eqid 2253 . . 3  |-  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( F `  ( x `  U. dom  x ) ) ) ) )  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( F `  ( x `
 U. dom  x
) ) ) ) )
5 rdgvalg 6318 . . 3  |-  ( y  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  y )  =  ( ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( F `  ( x `
 U. dom  x
) ) ) ) ) `  ( rec ( F ,  A
)  |`  y ) ) )
6 rdgseg 6321 . . 3  |-  ( y  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A )  |`  y )  e.  _V )
7 rdgfun 6315 . . . 4  |-  Fun  rec ( F ,  A )
8 funfn 5141 . . . 4  |-  ( Fun 
rec ( F ,  A )  <->  rec ( F ,  A )  Fn  dom  rec ( F ,  A ) )
97, 8mpbi 201 . . 3  |-  rec ( F ,  A )  Fn  dom  rec ( F ,  A )
10 limord 4344 . . . 4  |-  ( Lim 
dom  rec ( F ,  A )  ->  Ord  dom 
rec ( F ,  A ) )
111, 10ax-mp 10 . . 3  |-  Ord  dom  rec ( F ,  A
)
124, 5, 6, 9, 11tz7.44-2 6306 . 2  |-  ( suc 
B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
133, 12sylbi 189 1  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    = wceq 1619    e. wcel 1621   _Vcvv 2727   (/)c0 3362   ifcif 3470   U.cuni 3727    e. cmpt 3974   Ord word 4284   Lim wlim 4286   suc csuc 4287   dom cdm 4580   ran crn 4581   Fun wfun 4586    Fn wfn 4587   ` cfv 4592   reccrdg 6308
This theorem is referenced by:  rdgsuc  6323  rdgsucmptnf  6328  frsuc  6335  r1sucg  7325
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309
  Copyright terms: Public domain W3C validator