Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvv Unicode version

Theorem ralrimdvv 2599
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
Hypothesis
Ref Expression
ralrimdvv.1
Assertion
Ref Expression
ralrimdvv
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem ralrimdvv
StepHypRef Expression
1 ralrimdvv.1 . . . 4
21imp 420 . . 3
32ralrimivv 2596 . 2
43ex 425 1
 Colors of variables: wff set class Syntax hints:   wi 6   wa 360   wcel 1621  wral 2509 This theorem is referenced by:  ralrimdvva  2600  clatl  14064  lspsneu  15711  aalioulem4  19547  elfuns  23628 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1540  df-ral 2513
 Copyright terms: Public domain W3C validator