MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.36av Unicode version

Theorem r19.36av 2650
Description: One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. The other direction doesn't hold when  A is empty. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
r19.36av  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.36av
StepHypRef Expression
1 r19.35 2649 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
2 idd 23 . . . 4  |-  ( x  e.  A  ->  ( ps  ->  ps ) )
32rexlimiv 2623 . . 3  |-  ( E. x  e.  A  ps  ->  ps )
43imim2i 15 . 2  |-  ( ( A. x  e.  A  ph 
->  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  ->  ps ) )
51, 4sylbi 189 1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621   A.wral 2509   E.wrex 2510
This theorem is referenced by:  iinss  3851  uniimadom  8050
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-ral 2513  df-rex 2514
  Copyright terms: Public domain W3C validator