Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.35 Unicode version

Theorem r19.35 2649
 Description: Restricted quantifier version of Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.35

Proof of Theorem r19.35
StepHypRef Expression
1 r19.26 2637 . . . 4
2 annim 416 . . . . 5
32ralbii 2531 . . . 4
4 df-an 362 . . . 4
51, 3, 43bitr3i 268 . . 3
65con2bii 324 . 2
7 dfrex2 2520 . . 3
87imbi2i 305 . 2
9 dfrex2 2520 . 2
106, 8, 93bitr4ri 271 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wb 178   wa 360  wral 2509  wrex 2510 This theorem is referenced by:  r19.36av  2650  r19.37  2651  r19.43  2657  r19.37zv  3456  r19.36zv  3460  iinexg  4069  bndndx  9843  nmobndseqi  21187  nmobndseqiOLD  21188  intopcoaconlem3b  24704 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-ral 2513  df-rex 2514
 Copyright terms: Public domain W3C validator