Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwunss Unicode version

Theorem pwunss 4191
 Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwunss

Proof of Theorem pwunss
StepHypRef Expression
1 ssun 3262 . . 3
2 elun 3226 . . . 4
3 vex 2730 . . . . . 6
43elpw 3536 . . . . 5
53elpw 3536 . . . . 5
64, 5orbi12i 509 . . . 4
72, 6bitri 242 . . 3
83elpw 3536 . . 3
91, 7, 83imtr4i 259 . 2
109ssriv 3105 1
 Colors of variables: wff set class Syntax hints:   wo 359   wcel 1621   cun 3076   wss 3078  cpw 3530 This theorem is referenced by:  pwundif  4193  pwun  4195 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083  df-in 3085  df-ss 3089  df-pw 3532
 Copyright terms: Public domain W3C validator