Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstr Unicode version

Theorem psstr 3200
 Description: Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psstr

Proof of Theorem psstr
StepHypRef Expression
1 pssss 3192 . . 3
2 pssss 3192 . . 3
31, 2sylan9ss 3113 . 2
4 pssn2lp 3197 . . . 4
5 psseq1 3184 . . . . 5
65anbi1d 688 . . . 4
74, 6mtbiri 296 . . 3
87con2i 114 . 2
9 dfpss2 3182 . 2
103, 8, 9sylanbrc 648 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6   wa 360   wceq 1619   wss 3078   wpss 3079 This theorem is referenced by:  sspsstr  3201  psssstr  3202  porpss  6133  inf3lem5  7217  ltsopr  8536 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-ne 2414  df-in 3085  df-ss 3089  df-pss 3091
 Copyright terms: Public domain W3C validator