Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Unicode version

Theorem ps-1 28355
Description: The join of two atoms  R  .\/  S (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l  |-  .<_  =  ( le `  K )
ps1.j  |-  .\/  =  ( join `  K )
ps1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  =  ( R  .\/  S ) ) )

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 5717 . . . . . 6  |-  ( R  =  P  ->  ( R  .\/  S )  =  ( P  .\/  S
) )
21breq2d 3932 . . . . 5  |-  ( R  =  P  ->  (
( P  .\/  Q
)  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  .<_  ( P  .\/  S ) ) )
31eqeq2d 2264 . . . . 5  |-  ( R  =  P  ->  (
( P  .\/  Q
)  =  ( R 
.\/  S )  <->  ( P  .\/  Q )  =  ( P  .\/  S ) ) )
42, 3imbi12d 313 . . . 4  |-  ( R  =  P  ->  (
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )  <->  ( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) ) )
54eqcoms 2256 . . 3  |-  ( P  =  R  ->  (
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )  <->  ( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) ) )
6 simp3 962 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  .<_  ( R 
.\/  S ) )
7 simp1 960 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  HL )
8 simp21 993 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  A )
9 simp3l 988 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  R  e.  A )
10 ps1.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
11 ps1.a . . . . . . . . . . . . 13  |-  A  =  ( Atoms `  K )
1210, 11hlatjcom 28246 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  =  ( R 
.\/  P ) )
137, 8, 9, 12syl3anc 1187 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  R
)  =  ( R 
.\/  P ) )
14133ad2ant1 981 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  R )  =  ( R  .\/  P ) )
15 hllat 28242 . . . . . . . . . . . . . . . 16  |-  ( K  e.  HL  ->  K  e.  Lat )
16153ad2ant1 981 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  Lat )
17 eqid 2253 . . . . . . . . . . . . . . . . 17  |-  ( Base `  K )  =  (
Base `  K )
1817, 11atbase 28168 . . . . . . . . . . . . . . . 16  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
198, 18syl 17 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  e.  ( Base `  K ) )
20 simp22 994 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  A )
2117, 11atbase 28168 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2220, 21syl 17 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  e.  ( Base `  K ) )
23 simp3r 989 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  S  e.  A )
2417, 10, 11hlatjcl 28245 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
257, 9, 23, 24syl3anc 1187 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
26 ps1.l . . . . . . . . . . . . . . . 16  |-  .<_  =  ( le `  K )
2717, 26, 10latjle12 14012 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
2816, 19, 22, 25, 27syl13anc 1189 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
29 simpl 445 . . . . . . . . . . . . . 14  |-  ( ( P  .<_  ( R  .\/  S )  /\  Q  .<_  ( R  .\/  S
) )  ->  P  .<_  ( R  .\/  S
) )
3028, 29syl6bir 222 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  P  .<_  ( R  .\/  S
) ) )
3130adantr 453 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  P  .<_  ( R  .\/  S
) ) )
32 simpl1 963 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  K  e.  HL )
33 simpl21 1038 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  P  e.  A )
34 simpl3r 1016 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  S  e.  A )
35 simpl3l 1015 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  R  e.  A )
36 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  ->  P  =/=  R )
3726, 10, 11hlatexchb1 28271 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  R  e.  A
)  /\  P  =/=  R )  ->  ( P  .<_  ( R  .\/  S
)  <->  ( R  .\/  P )  =  ( R 
.\/  S ) ) )
3832, 33, 34, 35, 36, 37syl131anc 1200 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( P  .<_  ( R 
.\/  S )  <->  ( R  .\/  P )  =  ( R  .\/  S ) ) )
3931, 38sylibd 207 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( R  .\/  P )  =  ( R  .\/  S
) ) )
40393impia 1153 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( R  .\/  P )  =  ( R  .\/  S ) )
4114, 40eqtrd 2285 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  R )  =  ( R  .\/  S ) )
426, 41breqtrrd 3946 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  .<_  ( P 
.\/  R ) )
43423expia 1158 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  .<_  ( P  .\/  R ) ) )
4417, 10, 11hlatjcl 28245 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
457, 8, 9, 44syl3anc 1187 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
4617, 26, 10latjle12 14012 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  R ) ) )
4716, 19, 22, 45, 46syl13anc 1189 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  R ) ) )
48 simpr 449 . . . . . . . . . 10  |-  ( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P  .\/  R
) )  ->  Q  .<_  ( P  .\/  R
) )
49 simp23 995 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  P  =/=  Q )
5049necomd 2495 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  ->  Q  =/=  P )
5126, 10, 11hlatexchb1 28271 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  R
)  <->  ( P  .\/  Q )  =  ( P 
.\/  R ) ) )
527, 20, 9, 8, 50, 51syl131anc 1200 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( Q  .<_  ( P 
.\/  R )  <->  ( P  .\/  Q )  =  ( P  .\/  R ) ) )
5348, 52syl5ib 212 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  R )  /\  Q  .<_  ( P 
.\/  R ) )  ->  ( P  .\/  Q )  =  ( P 
.\/  R ) ) )
5447, 53sylbird 228 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  R )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
5554adantr 453 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  R )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
5643, 55syld 42 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( P  .\/  R
) ) )
57563impia 1153 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
5857, 41eqtrd 2285 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R  /\  ( P  .\/  Q )  .<_  ( R  .\/  S ) )  ->  ( P  .\/  Q )  =  ( R  .\/  S ) )
59583expia 1158 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  /\  P  =/=  R )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) ) )
6017, 10, 11hlatjcl 28245 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
617, 8, 23, 60syl3anc 1187 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  S
)  e.  ( Base `  K ) )
6217, 26, 10latjle12 14012 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  S ) ) )
6316, 19, 22, 61, 62syl13anc 1189 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P 
.\/  S ) )  <-> 
( P  .\/  Q
)  .<_  ( P  .\/  S ) ) )
64 simpr 449 . . . . 5  |-  ( ( P  .<_  ( P  .\/  S )  /\  Q  .<_  ( P  .\/  S
) )  ->  Q  .<_  ( P  .\/  S
) )
6563, 64syl6bir 222 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  Q  .<_  ( P  .\/  S
) ) )
6626, 10, 11hlatexchb1 28271 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  S  e.  A  /\  P  e.  A
)  /\  Q  =/=  P )  ->  ( Q  .<_  ( P  .\/  S
)  <->  ( P  .\/  Q )  =  ( P 
.\/  S ) ) )
677, 20, 23, 8, 50, 66syl131anc 1200 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( Q  .<_  ( P 
.\/  S )  <->  ( P  .\/  Q )  =  ( P  .\/  S ) ) )
6865, 67sylibd 207 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( P  .\/  S )  ->  ( P  .\/  Q )  =  ( P  .\/  S
) ) )
695, 59, 68pm2.61ne 2487 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) ) )
7017, 10, 11hlatjcl 28245 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
717, 8, 20, 70syl3anc 1187 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
7217, 26latref 14003 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  .<_  ( P  .\/  Q ) )
7316, 71, 72syl2anc 645 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( P  .\/  Q
)  .<_  ( P  .\/  Q ) )
74 breq2 3924 . . 3  |-  ( ( P  .\/  Q )  =  ( R  .\/  S )  ->  ( ( P  .\/  Q )  .<_  ( P  .\/  Q )  <-> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
7573, 74syl5ibcom 213 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  =  ( R 
.\/  S )  -> 
( P  .\/  Q
)  .<_  ( R  .\/  S ) ) )
7669, 75impbid 185 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  S )  <->  ( P  .\/  Q )  =  ( R  .\/  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   Latclat 13995   Atomscatm 28142   HLchlt 28229
This theorem is referenced by:  2atjlej  28357  hlatexch3N  28358  hlatexch4  28359  2llnjaN  28444  dalem1  28537  lneq2at  28656  2llnma3r  28666  cdleme11c  29139  cdleme11  29148  cdleme35a  29326  cdleme42k  29362  cdlemg8b  29506  cdlemg13a  29529  cdlemg18b  29557  cdlemg42  29607  trljco  29618
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-join 13954  df-lat 13996  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230
  Copyright terms: Public domain W3C validator