MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prth Unicode version

Theorem prth 557
Description: Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 548. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
prth  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  (
( ph  /\  ch )  ->  ( ps  /\  th ) ) )

Proof of Theorem prth
StepHypRef Expression
1 simpl 445 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ph  ->  ps ) )
2 simpr 449 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ch  ->  th ) )
31, 2anim12d 548 1  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  (
( ph  /\  ch )  ->  ( ps  /\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  mo  2138  2mo  2194  euind  2903  reuind  2917  reuss2  3390  opelopabt  4214  reusv3i  4478  tfrlem5  6329  wemaplem2  7195  rexanre  11760  rlimcn2  11994  o1of2  12016  o1rlimmul  12022  2sqlem6  20535  spanuni  22048  pm11.71  26928
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator