MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd Unicode version

Theorem pntpbnd 20569
Description: Lemma for pnt 20595. Establish smallness of  R at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntibnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntpbnd  |-  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
Distinct variable groups:    k, a, n, x, y    e, c, k, n, x, y, R
Allowed substitution hint:    R( a)

Proof of Theorem pntpbnd
StepHypRef Expression
1 pntibnd.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrsumbnd2 20548 . 2  |-  E. d  e.  RR+  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d
3 simpl 445 . . . . 5  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  -> 
d  e.  RR+ )
4 2rp 10238 . . . . 5  |-  2  e.  RR+
5 rpaddcl 10253 . . . . 5  |-  ( ( d  e.  RR+  /\  2  e.  RR+ )  ->  (
d  +  2 )  e.  RR+ )
63, 4, 5sylancl 646 . . . 4  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  -> 
( d  +  2 )  e.  RR+ )
7 2re 9695 . . . . . . . 8  |-  2  e.  RR
8 elioore 10564 . . . . . . . . . 10  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR )
98adantl 454 . . . . . . . . 9  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  e  e.  RR )
10 eliooord 10588 . . . . . . . . . . 11  |-  ( e  e.  ( 0 (,) 1 )  ->  (
0  <  e  /\  e  <  1 ) )
1110adantl 454 . . . . . . . . . 10  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  (
0  <  e  /\  e  <  1 ) )
1211simpld 447 . . . . . . . . 9  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  0  <  e )
139, 12elrpd 10267 . . . . . . . 8  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  e  e.  RR+ )
14 rerpdivcl 10260 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  e  e.  RR+ )  -> 
( 2  /  e
)  e.  RR )
157, 13, 14sylancr 647 . . . . . . 7  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  (
2  /  e )  e.  RR )
1615rpefcld 12259 . . . . . 6  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  ( exp `  ( 2  / 
e ) )  e.  RR+ )
17 simpllr 738 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  e  e.  ( 0 (,) 1
) )
18 eqid 2253 . . . . . . . . 9  |-  ( exp `  ( 2  /  e
) )  =  ( exp `  ( 2  /  e ) )
19 simplrr 740 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  y  e.  ( ( exp `  (
2  /  e ) ) (,)  +oo )
)
20 simplll 737 . . . . . . . . . 10  |-  ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  ->  d  e.  RR+ )
2120adantr 453 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  d  e.  RR+ )
22 simplll 737 . . . . . . . . . 10  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d ) )
2322simprd 451 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )
24 eqid 2253 . . . . . . . . 9  |-  ( d  +  2 )  =  ( d  +  2 )
25 simplrl 739 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )
)
26 simpr 449 . . . . . . . . 9  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  -.  E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )
271, 17, 18, 19, 21, 23, 24, 25, 26pntpbnd2 20568 . . . . . . . 8  |-  -.  (
( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
28 iman 415 . . . . . . . 8  |-  ( ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  ->  E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )  <->  -.  (
( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  /\  -.  E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
) )
2927, 28mpbir 202 . . . . . . 7  |-  ( ( ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  /\  e  e.  ( 0 (,) 1 ) )  /\  ( k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo )  /\  y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo )
) )  ->  E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e ) )
3029ralrimivva 2597 . . . . . 6  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
31 oveq1 5717 . . . . . . . . 9  |-  ( x  =  ( exp `  (
2  /  e ) )  ->  ( x (,)  +oo )  =  ( ( exp `  (
2  /  e ) ) (,)  +oo )
)
3231raleqdv 2694 . . . . . . . 8  |-  ( x  =  ( exp `  (
2  /  e ) )  ->  ( A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  <  n  /\  n  <_  ( k  x.  y
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
e )  <->  A. y  e.  ( ( exp `  (
2  /  e ) ) (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
3332ralbidv 2527 . . . . . . 7  |-  ( x  =  ( exp `  (
2  /  e ) )  ->  ( A. k  e.  ( ( exp `  ( ( d  +  2 )  / 
e ) ) [,) 
+oo ) A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)  <->  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  (
( exp `  (
2  /  e ) ) (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
3433rcla4ev 2821 . . . . . 6  |-  ( ( ( exp `  (
2  /  e ) )  e.  RR+  /\  A. k  e.  ( ( exp `  ( ( d  +  2 )  / 
e ) ) [,) 
+oo ) A. y  e.  ( ( exp `  (
2  /  e ) ) (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
3516, 30, 34syl2anc 645 . . . . 5  |-  ( ( ( d  e.  RR+  /\ 
A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  (
n  x.  ( n  +  1 ) ) ) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
3635ralrimiva 2588 . . . 4  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  ->  A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) )
37 oveq1 5717 . . . . . . . . . 10  |-  ( c  =  ( d  +  2 )  ->  (
c  /  e )  =  ( ( d  +  2 )  / 
e ) )
3837fveq2d 5381 . . . . . . . . 9  |-  ( c  =  ( d  +  2 )  ->  ( exp `  ( c  / 
e ) )  =  ( exp `  (
( d  +  2 )  /  e ) ) )
3938oveq1d 5725 . . . . . . . 8  |-  ( c  =  ( d  +  2 )  ->  (
( exp `  (
c  /  e ) ) [,)  +oo )  =  ( ( exp `  ( ( d  +  2 )  /  e
) ) [,)  +oo ) )
4039raleqdv 2694 . . . . . . 7  |-  ( c  =  ( d  +  2 )  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )  <->  A. k  e.  ( ( exp `  ( ( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
4140rexbidv 2528 . . . . . 6  |-  ( c  =  ( d  +  2 )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
) )
4241ralbidv 2527 . . . . 5  |-  ( c  =  ( d  +  2 )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. n  e.  NN  ( ( y  < 
n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  e
) ) )
4342rcla4ev 2821 . . . 4  |-  ( ( ( d  +  2 )  e.  RR+  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( d  +  2 )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)  ->  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
446, 36, 43syl2anc 645 . . 3  |-  ( ( d  e.  RR+  /\  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d )  ->  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
4544rexlimiva 2624 . 2  |-  ( E. d  e.  RR+  A. i  e.  NN  A. j  e.  ZZ  ( abs `  sum_ n  e.  ( i ... j ) ( ( R `  n )  /  ( n  x.  ( n  +  1 ) ) ) )  <_  d  ->  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
)
462, 45ax-mp 10 1  |-  E. c  e.  RR+  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. n  e.  NN  (
( y  <  n  /\  n  <_  ( k  x.  y ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  e )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   ZZcz 9903   RR+crp 10233   (,)cioo 10534   [,)cico 10536   ...cfz 10660   abscabs 11596   sum_csu 12035   expce 12217  ψcchp 20162
This theorem is referenced by:  pntibnd  20574
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-em 20119  df-cht 20166  df-vma 20167  df-chp 20168  df-ppi 20169
  Copyright terms: Public domain W3C validator