MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt Unicode version

Theorem pnt 20595
Description: The Prime Number Theorem: the number of prime numbers less than  x tends asymptotically to  x  /  log (
x ) as  x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  ~~> r  1

Proof of Theorem pnt
StepHypRef Expression
1 1re 8717 . . . . . . 7  |-  1  e.  RR
2 rexr 8757 . . . . . . 7  |-  ( 1  e.  RR  ->  1  e.  RR* )
31, 2ax-mp 10 . . . . . 6  |-  1  e.  RR*
4 1lt2 9765 . . . . . 6  |-  1  <  2
5 df-ioo 10538 . . . . . . 7  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
6 df-ico 10540 . . . . . . 7  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
7 xrltletr 10367 . . . . . . 7  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  w  e. 
RR* )  ->  (
( 1  <  2  /\  2  <_  w )  ->  1  <  w
) )
85, 6, 7ixxss1 10552 . . . . . 6  |-  ( ( 1  e.  RR*  /\  1  <  2 )  ->  (
2 [,)  +oo )  C_  ( 1 (,)  +oo ) )
93, 4, 8mp2an 656 . . . . 5  |-  ( 2 [,)  +oo )  C_  (
1 (,)  +oo )
10 resmpt 4907 . . . . 5  |-  ( ( 2 [,)  +oo )  C_  ( 1 (,)  +oo )  ->  ( ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) )
119, 10mp1i 13 . . . 4  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) ) )
129sseli 3099 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  ( 1 (,)  +oo ) )
13 ioossre 10590 . . . . . . . . . . 11  |-  ( 1 (,)  +oo )  C_  RR
1413sseli 3099 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
1512, 14syl 17 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR )
16 2re 9695 . . . . . . . . . . 11  |-  2  e.  RR
17 pnfxr 10334 . . . . . . . . . . 11  |-  +oo  e.  RR*
18 elico2 10592 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  +oo 
e.  RR* )  ->  (
x  e.  ( 2 [,)  +oo )  <->  ( x  e.  RR  /\  2  <_  x  /\  x  <  +oo ) ) )
1916, 17, 18mp2an 656 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  <->  ( x  e.  RR  /\  2  <_  x  /\  x  <  +oo ) )
2019simp2bi 976 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  2  <_  x )
21 chtrpcl 20245 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
( theta `  x )  e.  RR+ )
2215, 20, 21syl2anc 645 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  e.  RR+ )
23 0re 8718 . . . . . . . . . . . 12  |-  0  e.  RR
2423a1i 12 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  e.  RR )
251a1i 12 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  e.  RR )
26 0lt1 9176 . . . . . . . . . . . 12  |-  0  <  1
2726a1i 12 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  <  1 )
28 eliooord 10588 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
2928simpld 447 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  <  x )
3024, 25, 14, 27, 29lttrd 8857 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  <  x )
3114, 30elrpd 10267 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR+ )
3212, 31syl 17 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR+ )
3322, 32rpdivcld 10286 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  x )  e.  RR+ )
3433adantl 454 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  x )  e.  RR+ )
35 ppinncl 20244 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
3615, 20, 35syl2anc 645 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  NN )
3736nnrpd 10268 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  RR+ )
3814, 29rplogcld 19812 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( log `  x )  e.  RR+ )
3912, 38syl 17 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  RR+ )
4037, 39rpmulcld 10285 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  RR+ )
4122, 40rpdivcld 10286 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
4241adantl 454 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
4332ssriv 3105 . . . . . . . 8  |-  ( 2 [,)  +oo )  C_  RR+
44 resmpt 4907 . . . . . . . 8  |-  ( ( 2 [,)  +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (
theta `  x )  /  x ) ) )
4543, 44ax-mp 10 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (
theta `  x )  /  x ) )
46 pnt2 20594 . . . . . . . 8  |-  ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  ~~> r  1
47 rlimres 11909 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  ~~> r  1  ->  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 )
4846, 47mp1i 13 . . . . . . 7  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( ( theta `  x )  /  x
) )  |`  (
2 [,)  +oo ) )  ~~> r  1 )
4945, 48syl5eqbrr 3954 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( theta `  x
)  /  x ) )  ~~> r  1 )
50 chtppilim 20456 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) )  ~~> r  1
5150a1i 12 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) )  ~~> r  1 )
52 ax-1ne0 8686 . . . . . . 7  |-  1  =/=  0
5352a1i 12 . . . . . 6  |-  (  T. 
->  1  =/=  0
)
5441rpne0d 10274 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
5554adantl 454 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
5634, 42, 49, 51, 53, 55rlimdiv 11996 . . . . 5  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( ( theta `  x )  /  x
)  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) ) )  ~~> r  ( 1  /  1 ) )
5715recnd 8741 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  CC )
58 chtcl 20179 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( theta `  x )  e.  RR )
5914, 58syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( theta `  x )  e.  RR )
6059recnd 8741 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( theta `  x )  e.  CC )
6112, 60syl 17 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  e.  CC )
6257, 61mulcomd 8736 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  x.  ( theta `  x ) )  =  ( ( theta `  x
)  x.  x ) )
6362oveq2d 5726 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( x  x.  ( theta `  x
) ) )  =  ( ( ( theta `  x )  x.  (
(π `  x )  x.  ( log `  x
) ) )  / 
( ( theta `  x
)  x.  x ) ) )
6440rpcnd 10271 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  CC )
6532rpne0d 10274 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  =/=  0 )
6622rpne0d 10274 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  =/=  0 )
6764, 57, 61, 65, 66divcan5d 9442 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( (
theta `  x )  x.  x ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
6863, 67eqtrd 2285 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( x  x.  ( theta `  x
) ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
6940rpne0d 10274 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  =/=  0
)
7061, 57, 61, 64, 65, 69, 66divdivdivd 9463 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  /  x )  /  ( ( theta `  x )  /  (
(π `  x )  x.  ( log `  x
) ) ) )  =  ( ( (
theta `  x )  x.  ( (π `  x )  x.  ( log `  x
) ) )  / 
( x  x.  ( theta `  x ) ) ) )
7136nncnd 9642 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  CC )
7239rpcnd 10271 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  CC )
7339rpne0d 10274 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  =/=  0 )
7471, 57, 72, 65, 73divdiv2d 9448 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  =  ( ( (π `  x )  x.  ( log `  x
) )  /  x
) )
7568, 70, 743eqtr4d 2295 . . . . . 6  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  /  x )  /  ( ( theta `  x )  /  (
(π `  x )  x.  ( log `  x
) ) ) )  =  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )
7675mpteq2ia 3999 . . . . 5  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( ( ( theta `  x )  /  x )  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
77 ax-1cn 8675 . . . . . 6  |-  1  e.  CC
7877div1i 9368 . . . . 5  |-  ( 1  /  1 )  =  1
7956, 76, 783brtr3g 3951 . . . 4  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  ~~> r  1 )
8011, 79eqbrtrd 3940 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 )
81 ppicl 20201 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (π `  x )  e.  NN0 )
8214, 81syl 17 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (π `  x )  e.  NN0 )
8382nn0red 9898 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (π `  x )  e.  RR )
8431, 38rpdivcld 10286 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
x  /  ( log `  x ) )  e.  RR+ )
8583, 84rerpdivcld 10296 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  RR )
8685recnd 8741 . . . . . 6  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  CC )
8786adantl 454 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  CC )
88 eqid 2253 . . . . 5  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  =  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
8987, 88fmptd 5536 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) : ( 1 (,)  +oo ) --> CC )
9013a1i 12 . . . 4  |-  (  T. 
->  ( 1 (,)  +oo )  C_  RR )
9116a1i 12 . . . 4  |-  (  T. 
->  2  e.  RR )
9289, 90, 91rlimresb 11916 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  ~~> r  1  <->  ( (
x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 ) )
9380, 92mpbird 225 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  ~~> r  1 )
9493trud 1320 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  ~~> r  1
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ w3a 939    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2412    C_ wss 3078   class class class wbr 3920    e. cmpt 3974    |` cres 4582   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    x. cmul 8622    +oocpnf 8744   RR*cxr 8746    < clt 8747    <_ cle 8748    / cdiv 9303   NNcn 9626   2c2 9675   NN0cn0 9844   RR+crp 10233   (,)cioo 10534   [,)cico 10536    ~~> r crli 11836   logclog 19744   thetaccht 20160  πcppi 20163
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-em 20119  df-cht 20166  df-vma 20167  df-chp 20168  df-ppi 20169  df-mu 20170
  Copyright terms: Public domain W3C validator