MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.77 Unicode version

Theorem pm4.77 765
Description: Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.77  |-  ( ( ( ps  ->  ph )  /\  ( ch  ->  ph )
)  <->  ( ( ps  \/  ch )  ->  ph ) )

Proof of Theorem pm4.77
StepHypRef Expression
1 jaob 761 . 2  |-  ( ( ( ps  \/  ch )  ->  ph )  <->  ( ( ps  ->  ph )  /\  ( ch  ->  ph ) ) )
21bicomi 195 1  |-  ( ( ( ps  ->  ph )  /\  ( ch  ->  ph )
)  <->  ( ( ps  \/  ch )  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
  Copyright terms: Public domain W3C validator