MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2im Unicode version

Theorem pm3.2im 139
Description: Theorem *3.2 of [WhiteheadRussell] p. 111, expressed with primitive connectives. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Assertion
Ref Expression
pm3.2im  |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps )
) )

Proof of Theorem pm3.2im
StepHypRef Expression
1 pm2.27 37 . 2  |-  ( ph  ->  ( ( ph  ->  -. 
ps )  ->  -.  ps ) )
21con2d 109 1  |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6
This theorem is referenced by:  jc  141  expi  143  expt  150
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
  Copyright terms: Public domain W3C validator