MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.21 Unicode version

Theorem pm3.21 437
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm3.21  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )

Proof of Theorem pm3.21
StepHypRef Expression
1 pm3.2 436 . 2  |-  ( ps 
->  ( ph  ->  ( ps  /\  ph ) ) )
21com12 29 1  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  pm3.22  438  iba  491  ancr  534  anc2r  541  pm5.31  574  19.41  1799  2mo  2191  smoord  6268  fisupg  6990  winalim2  8198  aalioulem5  19548  musum  20263  chrelat2i  22775  relin01  23259  waj-ax  24027  sssu  24307  pm11.71  26762  onfrALTlem2  27004  19.41rg  27009  onfrALTlem2VD  27355  2pm13.193VD  27369  a9e2eqVD  27373  bnj1173  27721  hlrelat2  28281
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator