MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.63 Unicode version

Theorem pm2.63 766
Description: Theorem *2.63 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.63  |-  ( (
ph  \/  ps )  ->  ( ( -.  ph  \/  ps )  ->  ps ) )

Proof of Theorem pm2.63
StepHypRef Expression
1 pm2.53 364 . 2  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
2 idd 23 . 2  |-  ( (
ph  \/  ps )  ->  ( ps  ->  ps ) )
31, 2jaod 371 1  |-  ( (
ph  \/  ps )  ->  ( ( -.  ph  \/  ps )  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator