MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.45 Unicode version

Theorem pm2.45 388
Description: Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.45  |-  ( -.  ( ph  \/  ps )  ->  -.  ph )

Proof of Theorem pm2.45
StepHypRef Expression
1 orc 376 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
21con3i 129 1  |-  ( -.  ( ph  \/  ps )  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359
This theorem is referenced by:  pm2.47  390  dn1  937  eueq3  2877
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator