MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.36 Unicode version

Theorem pm2.36 819
Description: Theorem *2.36 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
Assertion
Ref Expression
pm2.36  |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ch  \/  ph ) ) )

Proof of Theorem pm2.36
StepHypRef Expression
1 pm1.4 377 . 2  |-  ( (
ph  \/  ps )  ->  ( ps  \/  ph ) )
2 pm2.38 818 . 2  |-  ( ( ps  ->  ch )  ->  ( ( ps  \/  ph )  ->  ( ch  \/  ph ) ) )
31, 2syl5 30 1  |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ch  \/  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
  Copyright terms: Public domain W3C validator