Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.122b Unicode version

Theorem pm14.122b 26790
 Description: Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
Assertion
Ref Expression
pm14.122b
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem pm14.122b
StepHypRef Expression
1 eqeq2 2262 . . . . . 6
21imbi2d 309 . . . . 5
32albidv 2004 . . . 4
4 dfsbcq 2923 . . . . 5
54bibi1d 312 . . . 4
63, 5imbi12d 313 . . 3
7 sbc5 2945 . . . 4
8 nfa1 1719 . . . . 5
9 simpr 449 . . . . . 6
10 ancr 534 . . . . . . 7
1110a4s 1700 . . . . . 6
129, 11impbid2 197 . . . . 5
138, 12exbid 1714 . . . 4
147, 13syl5bb 250 . . 3
156, 14vtoclg 2781 . 2
1615pm5.32d 623 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178   wa 360  wal 1532  wex 1537   wceq 1619   wcel 1621  wsbc 2921 This theorem is referenced by:  pm14.122c  26791 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-sbc 2922
 Copyright terms: Public domain W3C validator