Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.62 Unicode version

Theorem pm11.62 26759
Description: Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.62  |-  ( A. x A. y ( (
ph  /\  ps )  ->  ch )  <->  A. x
( ph  ->  A. y
( ps  ->  ch ) ) )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)

Proof of Theorem pm11.62
StepHypRef Expression
1 impexp 435 . . . 4  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ph  ->  ( ps  ->  ch ) ) )
21albii 1554 . . 3  |-  ( A. y ( ( ph  /\ 
ps )  ->  ch ) 
<-> 
A. y ( ph  ->  ( ps  ->  ch ) ) )
3 19.21v 2011 . . 3  |-  ( A. y ( ph  ->  ( ps  ->  ch )
)  <->  ( ph  ->  A. y ( ps  ->  ch ) ) )
42, 3bitri 242 . 2  |-  ( A. y ( ( ph  /\ 
ps )  ->  ch ) 
<->  ( ph  ->  A. y
( ps  ->  ch ) ) )
54albii 1554 1  |-  ( A. x A. y ( (
ph  /\  ps )  ->  ch )  <->  A. x
( ph  ->  A. y
( ps  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1540
  Copyright terms: Public domain W3C validator