MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2 Unicode version

Theorem orim2 817
Description: Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
orim2  |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) )

Proof of Theorem orim2
StepHypRef Expression
1 id 21 . 2  |-  ( ( ps  ->  ch )  ->  ( ps  ->  ch ) )
21orim2d 816 1  |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem is referenced by:  pm2.81  827  rb-ax1  1512
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
  Copyright terms: Public domain W3C validator