MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordintdif Unicode version

Theorem ordintdif 4334
Description: If  B is smaller than  A, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
ordintdif  |-  ( ( Ord  A  /\  Ord  B  /\  ( A  \  B )  =/=  (/) )  ->  B  =  |^| ( A 
\  B ) )

Proof of Theorem ordintdif
StepHypRef Expression
1 ssdif0 3420 . . 3  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
21necon3bbii 2443 . 2  |-  ( -.  A  C_  B  <->  ( A  \  B )  =/=  (/) )
3 dfdif2 3087 . . . 4  |-  ( A 
\  B )  =  { x  e.  A  |  -.  x  e.  B }
43inteqi 3764 . . 3  |-  |^| ( A  \  B )  = 
|^| { x  e.  A  |  -.  x  e.  B }
5 ordtri1 4318 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
65con2bid 321 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  <->  -.  A  C_  B
) )
7 ordelord 4307 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
8 ordtri1 4318 . . . . . . . . . . . . 13  |-  ( ( Ord  B  /\  Ord  x )  ->  ( B  C_  x  <->  -.  x  e.  B ) )
98ancoms 441 . . . . . . . . . . . 12  |-  ( ( Ord  x  /\  Ord  B )  ->  ( B  C_  x  <->  -.  x  e.  B ) )
107, 9sylan 459 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  Ord  B )  -> 
( B  C_  x  <->  -.  x  e.  B ) )
1110an32s 782 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  Ord  B )  /\  x  e.  A )  ->  ( B  C_  x  <->  -.  x  e.  B ) )
1211bicomd 194 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  Ord  B )  /\  x  e.  A )  ->  ( -.  x  e.  B  <->  B 
C_  x ) )
1312rabbidva 2718 . . . . . . . 8  |-  ( ( Ord  A  /\  Ord  B )  ->  { x  e.  A  |  -.  x  e.  B }  =  { x  e.  A  |  B  C_  x }
)
1413inteqd 3765 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  |^| { x  e.  A  |  -.  x  e.  B }  =  |^| { x  e.  A  |  B  C_  x } )
15 intmin 3780 . . . . . . 7  |-  ( B  e.  A  ->  |^| { x  e.  A  |  B  C_  x }  =  B )
1614, 15sylan9eq 2305 . . . . . 6  |-  ( ( ( Ord  A  /\  Ord  B )  /\  B  e.  A )  ->  |^| { x  e.  A  |  -.  x  e.  B }  =  B )
1716ex 425 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  ->  |^| { x  e.  A  |  -.  x  e.  B }  =  B ) )
186, 17sylbird 228 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  A  C_  B  ->  |^| { x  e.  A  |  -.  x  e.  B }  =  B ) )
19183impia 1153 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  -.  A  C_  B )  ->  |^| { x  e.  A  |  -.  x  e.  B }  =  B )
204, 19syl5req 2298 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  -.  A  C_  B )  ->  B  =  |^| ( A  \  B ) )
212, 20syl3an3br 1228 1  |-  ( ( Ord  A  /\  Ord  B  /\  ( A  \  B )  =/=  (/) )  ->  B  =  |^| ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   {crab 2512    \ cdif 3075    C_ wss 3078   (/)c0 3362   |^|cint 3760   Ord word 4284
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-int 3761  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288
  Copyright terms: Public domain W3C validator