MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthg2 Unicode version

Theorem opthg2 4140
Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg2  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem opthg2
StepHypRef Expression
1 opthg 4139 . 2  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( <. C ,  D >.  =  <. A ,  B >.  <-> 
( C  =  A  /\  D  =  B ) ) )
2 eqcom 2255 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  <. C ,  D >.  =  <. A ,  B >. )
3 eqcom 2255 . . 3  |-  ( A  =  C  <->  C  =  A )
4 eqcom 2255 . . 3  |-  ( B  =  D  <->  D  =  B )
53, 4anbi12i 681 . 2  |-  ( ( A  =  C  /\  B  =  D )  <->  ( C  =  A  /\  D  =  B )
)
61, 2, 53bitr4g 281 1  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   <.cop 3547
This theorem is referenced by:  opth2  4141  fliftel  5660
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553
  Copyright terms: Public domain W3C validator