Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth Unicode version

Theorem opth 4138
 Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that and are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1
opth1.2
Assertion
Ref Expression
opth

Proof of Theorem opth
StepHypRef Expression
1 opth1.1 . . . 4
2 opth1.2 . . . 4
31, 2opth1 4137 . . 3
41, 2opi1 4133 . . . . . . 7
5 id 21 . . . . . . 7
64, 5syl5eleq 2339 . . . . . 6
7 oprcl 3720 . . . . . 6
86, 7syl 17 . . . . 5
98simprd 451 . . . 4
103opeq1d 3702 . . . . . . . 8
1110, 5eqtr3d 2287 . . . . . . 7
128simpld 447 . . . . . . . 8
13 dfopg 3694 . . . . . . . 8
1412, 2, 13sylancl 646 . . . . . . 7
1511, 14eqtr3d 2287 . . . . . 6
16 dfopg 3694 . . . . . . 7
178, 16syl 17 . . . . . 6
1815, 17eqtr3d 2287 . . . . 5
19 prex 4111 . . . . . 6
20 prex 4111 . . . . . 6
2119, 20preqr2 3687 . . . . 5
2218, 21syl 17 . . . 4
23 preq2 3611 . . . . . . 7
2423eqeq2d 2264 . . . . . 6
25 eqeq2 2262 . . . . . 6
2624, 25imbi12d 313 . . . . 5
27 vex 2730 . . . . . 6
282, 27preqr2 3687 . . . . 5
2926, 28vtoclg 2781 . . . 4
309, 22, 29sylc 58 . . 3
313, 30jca 520 . 2
32 opeq12 3698 . 2
3331, 32impbii 182 1
 Colors of variables: wff set class Syntax hints:   wi 6   wb 178   wa 360   wceq 1619   wcel 1621  cvv 2727  csn 3544  cpr 3545  cop 3547 This theorem is referenced by:  opthg  4139  otth2  4142  copsexg  4145  copsex4g  4148  opcom  4153  moop2  4154  opelopabsbOLD  4166  ralxpf  4737  cnvcnvsn  5056  funopg  5144  xpopth  6013  eqop  6014  soxp  6080  fnwelem  6082  opiota  6174  xpdom2  6842  xpf1o  6908  unxpdomlem2  6953  unxpdomlem3  6954  xpwdomg  7183  fseqenlem1  7535  iundom2g  8046  eqresr  8639  cnref1o  10228  hashfun  11266  fsumcom2  12114  xpnnenOLD  12362  qredeu  12660  qnumdenbi  12689  crt  12720  prmreclem3  12839  imasaddfnlem  13304  dprd2da  15112  dprd2d2  15114  erdszelem9  22901  brtp  23276  br8  23283  br6  23284  br4  23285  brsegle  23905  elo  24206  cbcpcp  24328  f1opr  25557  pellexlem3  26082  pellex  26086  opelopab4  27010  dib1dim  30044  diclspsn  30073  dihopelvalcpre  30127  dihmeetlem4preN  30185  dihmeetlem13N  30198  dih1dimatlem  30208  dihatlat  30213 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553
 Copyright terms: Public domain W3C validator