Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon3b Unicode version

Theorem opltcon3b 29687
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 22958 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b  |-  B  =  ( Base `  K
)
opltcon3.s  |-  .<  =  ( lt `  K )
opltcon3.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
opltcon3b  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  (  ._|_  `  Y )  .<  (  ._|_  `  X ) ) )

Proof of Theorem opltcon3b
StepHypRef Expression
1 opltcon3.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2404 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 opltcon3.o . . . 4  |-  ._|_  =  ( oc `  K )
41, 2, 3oplecon3b 29683 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le
`  K ) Y  <-> 
(  ._|_  `  Y )
( le `  K
) (  ._|_  `  X
) ) )
51, 2, 3oplecon3b 29683 . . . . 5  |-  ( ( K  e.  OP  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y ( le
`  K ) X  <-> 
(  ._|_  `  X )
( le `  K
) (  ._|_  `  Y
) ) )
653com23 1159 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y ( le
`  K ) X  <-> 
(  ._|_  `  X )
( le `  K
) (  ._|_  `  Y
) ) )
76notbid 286 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  Y ( le `  K ) X  <->  -.  (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  Y ) ) )
84, 7anbi12d 692 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X ( le `  K ) Y  /\  -.  Y
( le `  K
) X )  <->  ( (  ._|_  `  Y ) ( le `  K ) (  ._|_  `  X )  /\  -.  (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  Y ) ) ) )
9 opposet 29665 . . 3  |-  ( K  e.  OP  ->  K  e.  Poset )
10 opltcon3.s . . . 4  |-  .<  =  ( lt `  K )
111, 2, 10pltval3 14379 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( X
( le `  K
) Y  /\  -.  Y ( le `  K ) X ) ) )
129, 11syl3an1 1217 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( X
( le `  K
) Y  /\  -.  Y ( le `  K ) X ) ) )
1393ad2ant1 978 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Poset )
141, 3opoccl 29677 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
15143adant2 976 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
161, 3opoccl 29677 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
17163adant3 977 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
181, 2, 10pltval3 14379 . . 3  |-  ( ( K  e.  Poset  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  X )  e.  B
)  ->  ( (  ._|_  `  Y )  .< 
(  ._|_  `  X )  <->  ( (  ._|_  `  Y ) ( le `  K
) (  ._|_  `  X
)  /\  -.  (  ._|_  `  X ) ( le `  K ) (  ._|_  `  Y ) ) ) )
1913, 15, 17, 18syl3anc 1184 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<  (  ._|_  `  X
)  <->  ( (  ._|_  `  Y ) ( le
`  K ) ( 
._|_  `  X )  /\  -.  (  ._|_  `  X
) ( le `  K ) (  ._|_  `  Y ) ) ) )
208, 12, 193bitr4d 277 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  (  ._|_  `  Y )  .<  (  ._|_  `  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413   Basecbs 13424   lecple 13491   occoc 13492   Posetcpo 14352   ltcplt 14353   OPcops 29655
This theorem is referenced by:  opltcon1b  29688  opltcon2b  29689  cvrcon3b  29760  1cvratex  29955  lhprelat3N  30522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-poset 14358  df-plt 14370  df-oposet 29659
  Copyright terms: Public domain W3C validator