Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon3b Unicode version

Theorem oplecon3b 29683
Description: Contraposition law for orthoposets. (chsscon3 22955 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b  |-  B  =  ( Base `  K
)
opcon3.l  |-  .<_  =  ( le `  K )
opcon3.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
oplecon3b  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )

Proof of Theorem oplecon3b
StepHypRef Expression
1 opcon3.b . . 3  |-  B  =  ( Base `  K
)
2 opcon3.l . . 3  |-  .<_  =  ( le `  K )
3 opcon3.o . . 3  |-  ._|_  =  ( oc `  K )
41, 2, 3oplecon3 29682 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
(  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
5 simp1 957 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
61, 3opoccl 29677 . . . . 5  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
763adant2 976 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
81, 3opoccl 29677 . . . . 5  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
983adant3 977 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
101, 2, 3oplecon3 29682 . . . 4  |-  ( ( K  e.  OP  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  (
(  ._|_  `  Y )  .<_  (  ._|_  `  X )  ->  (  ._|_  `  (  ._|_  `  X ) ) 
.<_  (  ._|_  `  (  ._|_  `  Y ) ) ) )
115, 7, 9, 10syl3anc 1184 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<_  (  ._|_  `  X
)  ->  (  ._|_  `  (  ._|_  `  X ) )  .<_  (  ._|_  `  (  ._|_  `  Y ) ) ) )
121, 3opococ 29678 . . . . 5  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
13123adant3 977 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
141, 3opococ 29678 . . . . 5  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
15143adant2 976 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
1613, 15breq12d 4185 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  (  ._|_  `  X ) ) 
.<_  (  ._|_  `  (  ._|_  `  Y ) )  <-> 
X  .<_  Y ) )
1711, 16sylibd 206 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<_  (  ._|_  `  X
)  ->  X  .<_  Y ) )
184, 17impbid 184 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413   Basecbs 13424   lecple 13491   occoc 13492   OPcops 29655
This theorem is referenced by:  oplecon1b  29684  opltcon3b  29687  oldmm1  29700  omllaw4  29729  cvrcmp2  29767  glbconN  29859  lhpmod2i2  30520  lhpmod6i1  30521  lhprelat3N  30522  dochss  31848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-nul 4298
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043  df-oposet 29659
  Copyright terms: Public domain W3C validator