Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon1b Unicode version

Theorem oplecon1b 29684
Description: Contraposition law for strict ordering in orthoposets. (chsscon1 22956 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b  |-  B  =  ( Base `  K
)
opcon3.l  |-  .<_  =  ( le `  K )
opcon3.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
oplecon1b  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .<_  Y  <->  (  ._|_  `  Y )  .<_  X ) )

Proof of Theorem oplecon1b
StepHypRef Expression
1 opcon3.b . . . . 5  |-  B  =  ( Base `  K
)
2 opcon3.o . . . . 5  |-  ._|_  =  ( oc `  K )
31, 2opoccl 29677 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
433adant3 977 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
5 opcon3.l . . . 4  |-  .<_  =  ( le `  K )
61, 5, 2oplecon3b 29683 . . 3  |-  ( ( K  e.  OP  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  .<_  Y  <->  (  ._|_  `  Y
)  .<_  (  ._|_  `  (  ._|_  `  X ) ) ) )
74, 6syld3an2 1231 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  (  ._|_  `  X ) ) ) )
81, 2opococ 29678 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
983adant3 977 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
109breq2d 4184 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<_  (  ._|_  `  (  ._|_  `  X ) )  <-> 
(  ._|_  `  Y )  .<_  X ) )
117, 10bitrd 245 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .<_  Y  <->  (  ._|_  `  Y )  .<_  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413   Basecbs 13424   lecple 13491   occoc 13492   OPcops 29655
This theorem is referenced by:  opoc1  29685  oldmm1  29700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-nul 4298
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-iota 5377  df-fv 5421  df-ov 6043  df-oposet 29659
  Copyright terms: Public domain W3C validator