MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr2 Unicode version

Theorem ontr2 4332
Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
ontr2  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( ( A  C_  B  /\  B  e.  C
)  ->  A  e.  C ) )

Proof of Theorem ontr2
StepHypRef Expression
1 eloni 4295 . 2  |-  ( A  e.  On  ->  Ord  A )
2 eloni 4295 . 2  |-  ( C  e.  On  ->  Ord  C )
3 ordtr2 4329 . 2  |-  ( ( Ord  A  /\  Ord  C )  ->  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  C ) )
41, 2, 3syl2an 465 1  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( ( A  C_  B  /\  B  e.  C
)  ->  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621    C_ wss 3078   Ord word 4284   Oncon0 4285
This theorem is referenced by:  oeordsuc  6478  oelimcl  6484  oeeui  6486  omopthlem2  6540  omxpenlem  6848  oismo  7139  cantnflem1c  7273  cantnflem1  7275  cantnflem3  7277  rankr1ai  7354  rankxplim  7433  infxpenlem  7525  alephle  7599  pwcfsdom  8085  r1limwun  8238  axfelem6  23519  ontopbas  24041  ontgval  24044
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289
  Copyright terms: Public domain W3C validator