MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssmin Unicode version

Theorem onssmin 4479
Description: A non-empty class of ordinal numbers has a smallest member. Exercise 9 of [TakeutiZaring] p. 40. (Contributed by NM, 3-Oct-2003.)
Assertion
Ref Expression
onssmin  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  C_  y
)
Distinct variable group:    x, y, A

Proof of Theorem onssmin
StepHypRef Expression
1 onint 4477 . 2  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
2 intss1 3775 . . 3  |-  ( y  e.  A  ->  |^| A  C_  y )
32rgen 2570 . 2  |-  A. y  e.  A  |^| A  C_  y
4 sseq1 3120 . . . 4  |-  ( x  =  |^| A  -> 
( x  C_  y  <->  |^| A  C_  y )
)
54ralbidv 2527 . . 3  |-  ( x  =  |^| A  -> 
( A. y  e.  A  x  C_  y  <->  A. y  e.  A  |^| A  C_  y ) )
65rcla4ev 2821 . 2  |-  ( (
|^| A  e.  A  /\  A. y  e.  A  |^| A  C_  y )  ->  E. x  e.  A  A. y  e.  A  x  C_  y )
71, 3, 6sylancl 646 1  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  C_  y
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    C_ wss 3078   (/)c0 3362   |^|cint 3760   Oncon0 4285
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289
  Copyright terms: Public domain W3C validator