MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminsb Unicode version

Theorem onminsb 4481
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypotheses
Ref Expression
onminsb.1  |-  F/ x ps
onminsb.2  |-  ( x  =  |^| { x  e.  On  |  ph }  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
onminsb  |-  ( E. x  e.  On  ph  ->  ps )

Proof of Theorem onminsb
StepHypRef Expression
1 rabn0 3381 . . 3  |-  ( { x  e.  On  |  ph }  =/=  (/)  <->  E. x  e.  On  ph )
2 ssrab2 3179 . . . 4  |-  { x  e.  On  |  ph }  C_  On
3 onint 4477 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
{ x  e.  On  |  ph }  =/=  (/) )  ->  |^| { x  e.  On  |  ph }  e.  {
x  e.  On  |  ph } )
42, 3mpan 654 . . 3  |-  ( { x  e.  On  |  ph }  =/=  (/)  ->  |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph } )
51, 4sylbir 206 . 2  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph } )
6 nfrab1 2679 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
76nfint 3770 . . . 4  |-  F/_ x |^| { x  e.  On  |  ph }
8 nfcv 2385 . . . 4  |-  F/_ x On
9 onminsb.1 . . . 4  |-  F/ x ps
10 onminsb.2 . . . 4  |-  ( x  =  |^| { x  e.  On  |  ph }  ->  ( ph  <->  ps )
)
117, 8, 9, 10elrabf 2859 . . 3  |-  ( |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph }  <->  (
|^| { x  e.  On  |  ph }  e.  On  /\ 
ps ) )
1211simprbi 452 . 2  |-  ( |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph }  ->  ps )
135, 12syl 17 1  |-  ( E. x  e.  On  ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   F/wnf 1539    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   {crab 2512    C_ wss 3078   (/)c0 3362   |^|cint 3760   Oncon0 4285
This theorem is referenced by:  oawordeulem  6438  rankidb  7356  cardmin2  7515  cardaleph  7600  cardmin  8068
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289
  Copyright terms: Public domain W3C validator