HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsilem Unicode version

Theorem omlsilem 21811
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsilem.1  |-  G  e.  SH
omlsilem.2  |-  H  e.  SH
omlsilem.3  |-  G  C_  H
omlsilem.4  |-  ( H  i^i  ( _|_ `  G
) )  =  0H
omlsilem.5  |-  A  e.  H
omlsilem.6  |-  B  e.  G
omlsilem.7  |-  C  e.  ( _|_ `  G
)
Assertion
Ref Expression
omlsilem  |-  ( A  =  ( B  +h  C )  ->  A  e.  G )

Proof of Theorem omlsilem
StepHypRef Expression
1 omlsilem.2 . . . . . . . . . 10  |-  H  e.  SH
2 omlsilem.5 . . . . . . . . . 10  |-  A  e.  H
31, 2shelii 21624 . . . . . . . . 9  |-  A  e. 
~H
4 omlsilem.1 . . . . . . . . . 10  |-  G  e.  SH
5 omlsilem.6 . . . . . . . . . 10  |-  B  e.  G
64, 5shelii 21624 . . . . . . . . 9  |-  B  e. 
~H
7 shocss 21695 . . . . . . . . . . 11  |-  ( G  e.  SH  ->  ( _|_ `  G )  C_  ~H )
84, 7ax-mp 10 . . . . . . . . . 10  |-  ( _|_ `  G )  C_  ~H
9 omlsilem.7 . . . . . . . . . 10  |-  C  e.  ( _|_ `  G
)
108, 9sselii 3100 . . . . . . . . 9  |-  C  e. 
~H
113, 6, 10hvsubaddi 21475 . . . . . . . 8  |-  ( ( A  -h  B )  =  C  <->  ( B  +h  C )  =  A )
12 eqcom 2255 . . . . . . . 8  |-  ( ( B  +h  C )  =  A  <->  A  =  ( B  +h  C
) )
1311, 12bitri 242 . . . . . . 7  |-  ( ( A  -h  B )  =  C  <->  A  =  ( B  +h  C
) )
14 omlsilem.3 . . . . . . . . . 10  |-  G  C_  H
1514, 5sselii 3100 . . . . . . . . 9  |-  B  e.  H
16 shsubcl 21630 . . . . . . . . 9  |-  ( ( H  e.  SH  /\  A  e.  H  /\  B  e.  H )  ->  ( A  -h  B
)  e.  H )
171, 2, 15, 16mp3an 1282 . . . . . . . 8  |-  ( A  -h  B )  e.  H
18 eleq1 2313 . . . . . . . 8  |-  ( ( A  -h  B )  =  C  ->  (
( A  -h  B
)  e.  H  <->  C  e.  H ) )
1917, 18mpbii 204 . . . . . . 7  |-  ( ( A  -h  B )  =  C  ->  C  e.  H )
2013, 19sylbir 206 . . . . . 6  |-  ( A  =  ( B  +h  C )  ->  C  e.  H )
21 omlsilem.4 . . . . . . . . 9  |-  ( H  i^i  ( _|_ `  G
) )  =  0H
2221eleq2i 2317 . . . . . . . 8  |-  ( C  e.  ( H  i^i  ( _|_ `  G ) )  <->  C  e.  0H )
23 elin 3266 . . . . . . . 8  |-  ( C  e.  ( H  i^i  ( _|_ `  G ) )  <->  ( C  e.  H  /\  C  e.  ( _|_ `  G
) ) )
24 elch0 21663 . . . . . . . 8  |-  ( C  e.  0H  <->  C  =  0h )
2522, 23, 243bitr3i 268 . . . . . . 7  |-  ( ( C  e.  H  /\  C  e.  ( _|_ `  G ) )  <->  C  =  0h )
2625biimpi 188 . . . . . 6  |-  ( ( C  e.  H  /\  C  e.  ( _|_ `  G ) )  ->  C  =  0h )
2720, 9, 26sylancl 646 . . . . 5  |-  ( A  =  ( B  +h  C )  ->  C  =  0h )
2827oveq2d 5726 . . . 4  |-  ( A  =  ( B  +h  C )  ->  ( B  +h  C )  =  ( B  +h  0h ) )
29 ax-hvaddid 21414 . . . . 5  |-  ( B  e.  ~H  ->  ( B  +h  0h )  =  B )
306, 29ax-mp 10 . . . 4  |-  ( B  +h  0h )  =  B
3128, 30syl6eq 2301 . . 3  |-  ( A  =  ( B  +h  C )  ->  ( B  +h  C )  =  B )
3231, 5syl6eqel 2341 . 2  |-  ( A  =  ( B  +h  C )  ->  ( B  +h  C )  e.  G )
33 eleq1 2313 . 2  |-  ( A  =  ( B  +h  C )  ->  ( A  e.  G  <->  ( B  +h  C )  e.  G
) )
3432, 33mpbird 225 1  |-  ( A  =  ( B  +h  C )  ->  A  e.  G )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    i^i cin 3077    C_ wss 3078   ` cfv 4592  (class class class)co 5710   ~Hchil 21329    +h cva 21330   0hc0v 21334    -h cmv 21335   SHcsh 21338   _|_cort 21340   0Hc0h 21345
This theorem is referenced by:  omlsii  21812
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his2 21492  ax-his3 21493
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920  df-hvsub 21381  df-sh 21616  df-oc 21661  df-ch0 21662
  Copyright terms: Public domain W3C validator