MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Unicode version

Theorem ominf 6960
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf  |-  -.  om  e.  Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 6771 . . 3  |-  ( om  e.  Fin  <->  E. x  e.  om  om  ~~  x
)
2 nnord 4555 . . . . . . . 8  |-  ( x  e.  om  ->  Ord  x )
3 ordom 4556 . . . . . . . 8  |-  Ord  om
4 ordelssne 4312 . . . . . . . 8  |-  ( ( Ord  x  /\  Ord  om )  ->  ( x  e.  om  <->  ( x  C_  om 
/\  x  =/=  om ) ) )
52, 3, 4sylancl 646 . . . . . . 7  |-  ( x  e.  om  ->  (
x  e.  om  <->  ( x  C_ 
om  /\  x  =/=  om ) ) )
65ibi 234 . . . . . 6  |-  ( x  e.  om  ->  (
x  C_  om  /\  x  =/=  om ) )
7 df-pss 3091 . . . . . 6  |-  ( x 
C.  om  <->  ( x  C_  om 
/\  x  =/=  om ) )
86, 7sylibr 205 . . . . 5  |-  ( x  e.  om  ->  x  C.  om )
9 ensym 6796 . . . . 5  |-  ( om 
~~  x  ->  x  ~~  om )
10 pssinf 6958 . . . . 5  |-  ( ( x  C.  om  /\  x  ~~  om )  ->  -.  om  e.  Fin )
118, 9, 10syl2an 465 . . . 4  |-  ( ( x  e.  om  /\  om 
~~  x )  ->  -.  om  e.  Fin )
1211rexlimiva 2624 . . 3  |-  ( E. x  e.  om  om  ~~  x  ->  -.  om  e.  Fin )
131, 12sylbi 189 . 2  |-  ( om  e.  Fin  ->  -.  om  e.  Fin )
14 pm2.01 162 . 2  |-  ( ( om  e.  Fin  ->  -. 
om  e.  Fin )  ->  -.  om  e.  Fin )
1513, 14ax-mp 10 1  |-  -.  om  e.  Fin
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621    =/= wne 2412   E.wrex 2510    C_ wss 3078    C. wpss 3079   class class class wbr 3920   Ord word 4284   omcom 4547    ~~ cen 6746   Fincfn 6749
This theorem is referenced by:  fineqv  6963  nnsdomg  7001  ackbij1lem18  7747  fin23lem21  7849  fin23lem28  7850  fin23lem30  7852  isfin1-2  7895  uzinf  10906  bitsf1  12511  odhash  14720  ufinffr  17456  diophin  26018  diophren  26062  fiphp3d  26068
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753
  Copyright terms: Public domain W3C validator