Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0x Unicode version

Theorem om0x 6404
 Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. Unlike om0 6402, this version works whether or not is an ordinal. However, since it is an artifact of our particular function value definition outside the domain, we will not use it in order to be conventional and present it only as a curiosity. (Contributed by NM, 1-Feb-1996.)
Assertion
Ref Expression
om0x

Proof of Theorem om0x
StepHypRef Expression
1 om0 6402 . . 3
21adantr 453 . 2
3 fnom 6394 . . . 4
4 fndm 5200 . . . 4
53, 4ax-mp 10 . . 3
65ndmov 5856 . 2
72, 6pm2.61i 158 1
 Colors of variables: wff set class Syntax hints:   wa 360   wceq 1619   wcel 1621  c0 3362  con0 4285   cxp 4578   cdm 4580   wfn 4587  (class class class)co 5710   comu 6363 This theorem is referenced by:  om0r  6424  om1r  6427  omeulem1  6466  nnm0r  6494  nneob  6536  fin1a2lem6  7915 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-omul 6370
 Copyright terms: Public domain W3C validator